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ABSTRACT 

The question of when a square, linear operator is quasimonotone nondecreasing 

with respect to a nonnegative cone was posed in 1974 for the application of vector 

Lyapunov functions. Necessary conditions were given in 1980 based on the spectrum and 

the first eigenvector. This dissertation gives necessary and sufficient conditions for the 

case of the real spectrum when the first eigenvector is positive, and when the first 

eigenvector is nonnegative it gives conditions based on the reducibility of the matrix. For 

the complex spectrum, in the presence of a positive first eigenvector the problem is shown 

to be equivalent to the irreducible nonnegative inverse eigenvalue problem 
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I. INTRODUCTION 

This dissertation addresses what appears to be a simple problem: "Given a real, 

square matrix A, when does there exist a nonnegative matrix B such that B_1AB has its 

off-diagonal elements nonnegative?" Based on different bodies of literature, and on the 

application, we could similarly ask when a square linear operator is quasimonotone 

nondecreasing with respect to a cone in the nonnegative orthant, or when a real matrix is 

essentially nonnegative under a nonnegative change of basis. 

This question has its roots in the Perron-Frobenius theory of the early 1900s, and 

as we develop our solution, we trace its history, as well as the history and current state of 

some of its applications. We also discuss similar and related problems to demonstrate how 

this problem fits into the scheme of applied mathematics. 

We present a brief background on cones in Euclidean space and on the theory of 

nonnegative matrices in Chapter n. We use the following convention to present results. 

Theorems (and proofs) from the original source have the author and date after the 

theorem number. If the proof comes from another source, we indicate that prior to 

presenting the theorem. For well-known results, we either indicate the source or provide 

our own proof. We indicate the completion of a theorem and proof (or just a theorem for 

results presented without proof) with the D symbol. 

Chapter m motivates this question as an unsolved problem from the theory of 

cone-valued vector Lyapunov functions, which can determine stability in dynamical 

systems. We also present some of our results concerning this application. This question 



was first posed for the application of vector Lyapunov functions in 1974, and partial 

answers were given for this setting in 1980 and 1995. 

Chapters IV and V present our original solutions to this problem. The problem 

has significantly different solutions depending on whether the spectrum of A is real or 

general, and Chapter IV presents our solution for the real spectrum. In Section IV. A we 

show the necessary condition that the first eigenvector Xi of A (associated with the 

greatest eigenvalue X\) be nonnegative, and the sufficient condition that Xi be positive. 

The case where xi is nonnegative but not strictly positive has different solutions 

based on the reducibihty of the matrix A. Section IV.B addresses the reduced case, where 

we show sufficient conditions when Xi is a simple eigenvalue of A, and we have a 

sufficient (but not necessary) condition when Xi is not simple. 

In the case where xi is nonnegative and A is irreducible, Section IV. C shows 

that we can use xi to deflate the matrix A and reduce the problem to one of dimension 

n - 1. Here, we also give necessary and sufficient conditions for a cone to exist. 

Chapter V presents our solution for the complex spectrum We show that in the 

presence of a positive first eigenvector, the problem can be reduced to the nonnegative 

inverse eigenvalue problem, a classic unsolved problem from theoretical linear algebra. 

We present the solution only in terms of irreducible quasimonotone matrices, and we show 

why it is sufficient to consider such matrices. 

Chapter VI presents other direct and related applications from control theory and 

dynamics, as well as from other fields of applied mathematics, and we mention similar 

problems which have been solved or discussed previously from these and other fields. 



Chapter VH summarizes our results, to include the unsolved problems mentioned 

above, and we suggest further research. 

One attractive aspect of our solutions is they are constructive, and hence fairly 

simple, although there is some numerical instability inherent in some constructions. 

Particularly for applications where the existence of a matrix B is sufficient information for 

the analyst, we present collections of useful necessary and sufficient conditions. We begin 

with some background. 





H. CONES AND NONNEGATIVE MATRICES 

This chapter provides background for the main results. Specifically, we discuss 

cones in Euclidean space and present results from the theory of nonnegative matrices. We 

begin with a discussion of cones. 

A.       CONES IN EUCLIDEAN SPACE. 

The employment of cones as subsets of Rn began in the 1930s, where along with 

convex polyhedra, they were soon found to be useful in the field of linear optimization and 

in the study of linear inequalities (see, for example, WeyL 1935; and Goldman and Tucker, 

1956). Dual cones were first employed in 1941 by J. Dieudonne (see Lay, 1982), 

although dual sets to convex sets had been used much earlier (see Helly, 1923). 

The analysis of cones, convex polyhedra, and convex sets in general has become a 

major field of study in its own right, which has its roots in Caratheodory (1907), and 

which can be found, for example, in Sandgren (1954), Karlin (1968), Rockafeller (1970), 

Stoer and Witzgall (1970), Berman (1972), and Lay (1982). We need only the most basic 

definitions and results from those fields, and we begin with some definitions. 

If Rn is Euclidean n-space with norm ||-|| and inner product <%•>, a subset 

ScR° is convex if and only if x, y e S implies ax + (1 - a)y e S for all a e [0,1]. A 

set K is a cone if and only if XK. cK for A, > 0. A convex cone satisfies both 

definitions, and we require that K = K, where K is the closure of K, so that our cones 

are closed. (It is a result of Farkas (1901) that a set is a closed, convex cone if and only if 

K = (K*)*, where K* is the dual of K, to be defined shortly.) A cone is pointed ft and 



only if K r» (-K) = {0}, and solid if and only if K° is nonempty, where K° is the interior 

of K. An equivalent notion (in Euclidean space) to solid is reproducing, where K is 

reproducing if and only if K - K = Rn. (It is a result of Krein and Rutman (1948) that a 

cone is pointed if and only if its dual is solid.) 

A convex cone K is polyhedral if and only if it is generated by finitely many 

vectors, and if the number of independent vectors is equal to n, then K is simplicial. A 

closed, pointed convex cone is caüed proper. The result that a proper cone is generated 

by its extremals is a special case of the Kreh-Milman Theorem. The only cones we 

consider for our applications are proper, simplicial cones. 

Since a proper, simplicial cone is generated by n independent extremal vectors bi, 

we consider the nonsingular matrix B = [bi,. . ., b„] e Rn*n, and we denote the cone 

n 

generated by the columns of B as K(B). Clearly, K(B) = {x e Rn|x = ]£  ©fo, © > 0}. 
i=l 

The cone we most frequently encounter is R°, the nonnegative orthant, where 

R° =K(I) with I being the identity matrix in Rnxn. 

The cone K induces an order relation on Rn by x<y<=>y-xeK, and 

x<yoy-xeK°. The dual, or adjoint, cone is K* = {§ e Rn|<<j), x> > 0 V x e K}, 

which clearly satisfies the properties of a cone, and for a proper, simplicial cone, 

(K*)* = K If we define Ko as K\{0}, then x e K° <z> <<f>, x> > 0 V <|> e K;, and 

x e dK <=> <(|), x) = 0 for some <J> e K*, where dK is the boundary of K. 



A continuous function f: DcR° ->Rn is quasimonotone nondecreasing in. x 

relative to the cone K if for x, y e D, y - x e 8K implies there exists a § e K*   such 

that <4>,y-x> = 0 and <<|>, f(y) - f(x)> > 0. This definition, from Eisner (1974), is fairly 

standard; however, for nonlinear functions some authors require x, y e K (see, for 

example, Heikkilä, 1983). For a linear function f(x) = Ax, A e Rnxn, the quasimonotone 

nondecreasing property reduces to: x e ÖK implies there exists a <|> e Kjj   such that 

<<|>, x> = 0 and <(J), Ax> > 0. 

An equivalent definition is f: Rn -> Rn is quasimonotone nondecreasing if and only 

if fi(x) is nondecreasing in Xj for all i, j = 1,..., n, i * j, so the following lemma 

characterizes quasimonotone nondecreasing linear operators. This result appears as an 

example in Lakshmikantham and Leela (1977b). 

Lemma A.l. A linear operator A e Rnxn is quasimonotone nondecreasing 

relative to the nonnegative orthant if ay > 0 for all i * j. 

Proof. We prove this for n = 2. A similar argument works for n > 2. Let 

K = R* = {(xi, x2)|x! > 0, x2 > 0}. Then K* = K, since <4>, x> > 0 impUes 

<|»ixi + <j)2X2 > 0 for all xx, x2 > 0, which in turn implies fa, fa>0. If f(x) = Ax, where 

A = 
an    a12 

.a2i     a22 

is quasimonotone nondecreasing relative to K, then for xi = 0 or 

x2 = 0, there exists a <|> e K*   such that (fa x> = 0 and (fa Ax> > 0. Now 

(fa x> = faxi + fax2 = 0 and (fa Ax> = (j)i(auxi + ai2x2) + <()2(a21xi + a22x2) > 0. If xx = 0, 

x2 *■ 0, then <j>2x2 = 0 so fa = 0. This imphes, since fa > 0, that <t>iai2x2 ^ °> so ai2 ^ 0. 



Similarly, a2i > 0, so the linear functions which are quasimonotone nondecreasing relative 

to K are precisely those matrices with nonnegative off-diagonal entries.  D 

We use the following well-known results. 

Lemma A.2. Given a nonsingular matrix BeR" and the cone K(B), then 

K((B-y) = K(B)*. 

Proof. Let x e K((B_1)T) and y e fC(B) so that x = £  a^ and y = J£   ß;bi, -1\T\ anu y fc JMD; so mat x = 
i=l i=l 

with en, ßi > 0. Then (x, y> = £   £  ö^fr = £  oc.ßi ^ 0, so K((B-')T) c K(B)*. 
i=l       j=l i=l 

Similarly, let x g K((B 1)T). Since the fa are independent, x = ^  yi<t>i, but there 

exists at least one yj < 0. For y = bj e K(B), it follows that <x, y> = yj < 0, so xg K(B)\ 

Hence, K(B)* c K((B_1)T), proving the lemma.  D 

Lemma A.3. Given a nonsingular matrix BeR" and the cone K(B), then 

K(B)cR°  ifandonlyif K(B-')DR;. 

Proof. Let K(B)cRn
t  and let aeR"t be arbitrary. Then Ba = xeR"   since 

x is a positive linear combination of the generators of K(B). Because B is invertible, it 

follows that a = B_1x. As a e R°  is arbitrary and expressible as a nonnegative linear 

combination of the columns of B~!, we conclude that K(B_1) DR°. 

Conversely, assume K(B"')DR°   and let aeR'. Then there exists an 



xeR° such that B-1x = a, so x = Ba. Then B is nonnegative, otherwise it has some 

column bj which is not nonnegative, and letting a = [Oi,..., Oj_i, lj, Oj+i,. .., 0n]   shows 

x^R°, which is a contradiction. This proves the lemma.  D 

Since K(B) cR° implies B is a nonnegative matrix, and since B   is also 

nonnegative, then K((B-1)T) 3 R °  as well. This gives a nice characterization of the 

inverses of nonnegative matrices. 

When we say that a matrix A e Rnxn (or a linear operator A: Rn -» Rn) is 

quasimonotone nondecreasing with respect to a cone K(B), we mean that C = B" AB is 

quasimonotone nondecreasing (with respect to R °) even though A may not be. La 

Chapter m we show this result as a theorem of Heikkilä. 

Since quasimonotonicity is related to nonnegative matrices, we next present some 

background on nonnegative matrices. 

B.        NONNEGATIVE MATRICES 

The study of nonnegative matrices began with Perron's (1907) presentation of a 

theory of positive matrices. Frobenius (1908, 1909, 1912) immediately extended this 

theory to nonnegative matrices, and the general theory has carried their names ever since. 

Here we present only their basic results required for our application. 

Apositive matrix A e Rnxn has a^ > 0 for i, j = 1,. .., n. A nonnegative matrix 

has ay > 0. A matrix A is essentially nonnegative (positive) if and only if a^ > 0 (> 0) 

for all i * j. The following lemma justifies the term "essentially" nonnegative. 



Lemma B.l. If a matrix A e Rnxn is essentially nonnegative, then there exists a 

number r > 0 such that A = A + rl is nonnegative. Furthermore, the spectrum 

a(A ) = a(A)+ r, and the eigenvectors of A and A   are equal. 

Proof. The first statement is obvious. Let Ax = Xx. Then A x = (A + rl)x = 

Ax + rlx = Xx + rx = (X + r)x, completing the proof  D 

Hence, we can shift the diagonal (and the spectrum) of an essentially nonnegative 

(positive) matrix to make it nonnegative (positive). 

A matrix A is reducible if it is permutation similar to a matrix 

Ap = 
An    A12 

0     A 22. 

where An and A22 are square (and of positive dimension). 

Otherwise, A is irreducible. A positive matrix is a special case of a nonnegative, 

irreducible matrix. The following theorem summarizes the basic results we need from the 

theory of nonnegative matrices. 

Theorem B.2. (Perron, 1907; Frobenius, 1912). A positive matrix A>0 has an 

eigenvalue equal to the spectral radius of A. Associated with this eigenvalue is a positive 

eigenvector. Furthermore, A has no other nonnegative eigenvectors. The same is true 

for a nonnegative, irreducible matrix A > 0. 

A nonnegative matrix A > 0 has a (real) eigenvalue equal to the spectral radius of 

A. Associated with this eigenvalue is a nonnegative eigenvector.  D 

For a proof of the above results see, for example, Gantmacher (1959), Varga 

(1962), or Horn and Johnson (1991). Since the transpose of a matrix with any of the 

above properties retains that particular property, the same conclusion can be made about 

10 



the left eigenvectors of A. Note that when comparing two matrices as in A > B, or two 

vectors as in x > y, we refer to component-wise majorization. 

From Lemma B. 1 and Theorem B.2 it follows that an essentially positive matrix 

has a real eigenvalue with greatest real part, with positive left and right eigenvectors 

associated with this eigenvalue, and no other nonnegative eigenvectors. Similar 

conclusions follow for essentially nonnegative and irreducible essentially nonnegative 

matrices. 

If a linear operator A: Rn-> Rn is quasimonotone nondecreasing, then the matrix 

A e Rnxn is essentially nonnegative. Therefore, if we ask when a square, linear operator 

A on Rn is quasimonotone nondecreasing with respect to a cone in R ° , we are asking 

the equivalent question of when the matrix A € Rnxn is essentially nonnegative under a 

nonnegative change of basis. The next chapter introduces the motivating application, the 

theory of cone-valued vector Lyapunov functions. 

11 
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m. CONE-VALUED VECTOR LYAPUNOV FUNCTIONS 

The motivating problem for determining the quasimonotonicity of a square matrix 

with respect to a nonnegative cone in Rn comes from stability theory in differential 

equations. Specifically, we seek such a cone when using vector Lyapunov functions to 

determine the stability of an equilibrium in a dynamical system This chapter presents this 

problem for linear comparison systems. 

We begin with a brief introduction to the theory of differential equations and 

stability, hi order to develop the technique of vector Lyapunov functions, we also require 

results from the theory of differential inequalities. We present only the results from these 

fields needed to prove the major theorems of vector Lyapunov functions. In the case of 

well-known results, or those which will not be used directly, we present the results 

without proof. 

A.       DIFFERENTIAL EQUATIONS , INEQUALITIES, AND STABILITY 

We consider a system of first-order differential equations 

x'=f(t,x), x(t0) = Xo, (A.1) 

where x' = dx/dt, x e Rm, f: I x D -»Rm where IcR and D cRm are open sets 

containing to and xo respectively, and f has certain continuity requirements. A 

solution x(t) to equation A. 1 is a differentiable function x: J e R -> Rm satisfying the 

differential equation dx/dt = f(t, x) and the initial condition x(to) = xo. We also consider 

the autonomous system 

x' = f(x), x(t0) = xo, (A.2) 

13 



where the vector field is independent of time. 

Heard (1890) and Lindelöf (1894) showed that if f(t, x) is continuous on a closed 

set containing (t0, Xo), and is uniformly Lipschitz continuous with respect to x on this 

set, then equation A. 1 has a unique solution x(t) on some set [to, to + a] for a > 0. 

Peano (1890) showed that without the assumption of Lipschitz continuity, then equation 

A. 1 has at least one solution x(t) on t e [t0, t0 + a]. Furthermore, a solution on an open 

subset of Rm+1 containing (t0, xo) can be extended to the boundary ofthat set. Proofs of 

these results can be found, for example, in Hartman (1982), and these existence and 

uniqueness results are the basis for the theory of differential equations. 

To prove stability results about equilibria in equation A. 1, we also need results 

from the theory of differential inequalities. We extend the concept of the standard 

derivative used in equation A. 1 to the Dini derivative, defined as 

D_x(t) = liminf (l/h)[x(t + h) - x(t)]. This is one of four Dini derivatives, and we define 
h-»0" 

the others as needed. We begin with scalar inequalities (m = 1 in equation A. 1). The 

following results are found, for example, in Lakshmikantham and Leela (1969a) or Walter 

(1970). 

Theorem A.l. Let E be an open (t, x)-set in R2 and f e C[E, R]. Assume 

that v, w e C[[t0, t0 + a), R] for some a > 0, and (t, v(t)), (t, w(t)) e E for 

t e [to, to + a). If v(t0) < w (to) and if D_v(t) < f(t, v(t)) and D_w(t) > f(t, w(t)) for 

t e (to, to + a), then for t e [t0, t0 + a), v(t) < w(t).  D 

For the scalar differential equation A. 1 (m = 1), we define the maximal solution on 

[to, to + a) as the unique r(t) such that for every solution x(t) defined on [t0, t0 + a), 

14 



x(t) < r(t) for t e [t0, t0 + a). The minimal solution is defined analogously, and the 

following results presented for maximal solutions are also valid for minimal solutions, with 

appropriate changes. Under the hypothesis of Peano's theorem, a maximal solution exists 

on the interval [t0, t0 + a], and as before, if one exists on an open set, it can also be 

extended to the boundary ofthat set. 

It is useful when employing vector Lyapunov functions to compare a solution to a 

maximal solution over an interval. The following comparison theorem is basic to this idea. 

Theorem A.2. Let f e C[E, R], where E is an open (t, x>set in R2, and let 

[to, to + a) be the largest interval in which the maximal solution r(t) of equation A. 1 

exists. Let p e C[(t0, t0+ a), R], (t, p(t)) e E for t e [t0, t0 + a), p(t0) < xo, and for a 

fixed Dini derivative, Dp(t) < f(t, p(t)) on t e [t0, t0 + a) except on possibly a countable 

subset of this interval. Then for t e [t0, t0 + a), p(t) < r(t).  D 

The question of the existence of a maximal solution for a system of differential 

inequalities was solved by Wazewski (1950). He extended the above result to the case 

m > 1 in equation A. 1, and showed that a sufficient condition for a maximal solution to 

exist to equation A1 is that fj(x) be nondecreasing in Xj for each t e [t0, t0 + a], a 

property which we defined in Chapter II as quasimonotone nondecreasing. This property 

was first recognized as being important to differential inequalities by Müller (1926) (see 

Walter, 1970). There are analogous definitions for increasing, decreasing, etc., as well as 

for mixed quasimonotone properties. 

Burton and Whyburn (1952) used the mixed quasimonotone property to prove the 

existence of what are known as minimax solutions to differential equations. These are 

15 



solutions which, for example, are minimal in the first k components and maximal in the 

last m - k components. The existence of minimax solutions leads to a family of 

comparison theorems for differential inequalities which can be used to prove results about 

stability of equilibria using vector Lyapunov functions. These include results about 

stability, instability, and conditional stability. We present only the comparison theorem for 

stability, since we use stability for the motivating example of cone-valued vector 

Lyapunov functions. 

Theorem A.3. Let E be an open (t, x)-set in Rm+1, with f e C[E, Rm]. 

Suppose that f is quasimonotone nondecreasing in x, and let [t0, t0 + a) be the largest 

interval of existence of the maximal solution r(t) of equation A. 1. Let 

p e C[[t0, to + a), Rm], (t, p(t)) 6 E for t e [t0, t0 + a), and on this interval, for the Dini 

derivative, D_p(t) < f(t, p(t)). Then p(t0) < XQ implies p(t) < r(t) on this interval.  D 

This theorem applies for any Dini Derivative. The proof of this result, along with 

all the above results on differential inequalities, are in Lakshmikantham and Leela (1969a). 

We now present some basic definitions and concepts from stability theory which 

allow us to develop the technique of vector Lyapunov functions in its most simple setting. 

An equilibrium solution to equation A. 1 is a point £, such that f(t, £) = 0 for all 

t. Equation A. 1 admits the trivial solution £ = 0 if f(t, 0) = 0 for all t, and we frequently 

use this as our equilibrium as we can generally send an equilibrium point to the trivial 

solution via a change of coordinates. 

We wish to determine the stability of the equilibria of equation A. 1, and we begin 

with some basic definitions of stability. The trivial solution of equation A. 1 is stable if for 
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every neighborhood Ui of the origin and every to > 0, there is a neighborhood U2 of the 

origin such that xo e U2 imphes x(t) eUi for all t > to, where x(t) is a solution 

satisfying x(to) = xo. The trivial solution is asymptotically stable if it is stable and there 

exists a neighborhood U3 of the origin such that xo 6 U3 imphes that 

x(t) -»0 as t -» 00. 

We may express these definitions in terms of norms as follows. The trivial solution 

is stable if the solution x(t) with x(to) = Xo is such that for every s > 0, to > 0, there 

exists a 8>0 suchthat ||xo||<8 imphes ||x(t)||<e for all t>t0. Similarly, the trivial 

solution is asymptotically stable if there exists a 5 > 0 such that ||xo|| < 5 imphes that 

x(t) -> 0 as t -> 00. 

The trivial solution in a linear system (when f(t, x) in equation A. 1 is a linear 

function of x, i.e., f(t, x) = At(x) where A e Rmxm) is asymptotically stable when the 

eigenvalues of the matrix A all have negative real part for t>to. In this case we refer to 

the origin as a sink. In a nonlinear system, if the eigenvalues of the linearized system in a 

neighborhood of the equilibrium all have negative real part, then that equihbrium is a sink. 

If the origin is a sink in a linear system, then for all solutions x(t), ||x(t)|| is a 

strictly decreasing function of t, where |||| is the Euclidean norm. Similarly, it is a well- 

known result (see, e.g., Hirsch and Smale, 1974; or Arnold, 1989) that when the origin is 

asymptotically stable in a nonlinear system, there exists some norm such that ||x(t)|| is a 

decreasing function of t for all solutions x(t) starting sufficiently near the origin. 

These basic definitions of stability have numerous refinements. The two major 

classes of stability definitions are Lyapunov and Poisson, and among the logical statements 
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allowed in the definitions are 17,017,969 possible types of stability (see Bushaw, 1969). 

Many of these conditions are meaningless, and Massera (1949, 1956) discusses those 

which are most often studied in terms of Lyapunov functions. Habets and Peiffer (1973) 

extend these to a classification which encompasses all possible types of stability. 

The above definitions of stability can be generalized for nonautonomous systems 

(for example, when 8 depends on t0) and they can be extended to conditional stability 

(instability) definitions for stable (unstable) manifolds through the point (t0, 0). There is a 

well-developed theory of vector Lyapunov functions for conditional stability which uses 

the minimax solutions of Burton and Whyburn, but we discuss only the most basic case. 

Furthermore, these stability results are local, and we do not present the conditions under 

which they are global. 

The definitions of stability and asymptotic stability used above rely on the norm of 

a solution being either bounded in any neighborhood of the trivial solution, or decreasing 

uniformly as t increases. Particularly for nonlinear systems, these conditions may be 

difficult to verify. Lyapunov recognized this, and in his 1892 dissertation he suggested 

that a function other than a norm could be used to determine stability (Lyapunov, 1907). 

Of course we now refer to such functions as Lyapunov functions, and while they are 

frequently difficult to find, they offer another powerful tool for classifying equilibria. 

Before introducing Lyapunov functions, we define the derivative of a function 

along a trajectory, in this case where the trajectory is a solution to the initial value 

problem For a solution x(t) to equation A. 1 and a real-valued function V(t, x), we 

define (using the terminology of Wiggins, 1996) the orbital derivative of V along x as 
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V (t, x) = limsup (l/h)[V(t + h, x + hf(t, x)) - V(t, x)]. We now present a version of 
h->0+ 

Lyapunov's theorem from Hirsch and Smale (1974) for autonomous systems. A function 

V satisfying the hypothesis of the theorem is called a Lyapunov function. 

Theorem A.4. (Lyapunov, 1907). Let the autonomous system (equation A. 2) 

x'(t) = f(x) admit the trivial solution f(0) = 0. Let V(x) be a continuous function defined 

on a neighborhood U of the origin such that OeUcD. Let V be differentiable on 

U\{0},with 

V(0) = 0, and V(x) > 0 if x * 0. (A3) 

Then 

V < 0 on U\{0} (A4) 

implies the origin is stable. Furthermore, 

V < 0 on U\{0} (A.5) 

implies the origin is asymptotically stable. 

Proof. Let U be any neighborhood of the origin, and choose 8 such that 

B5(0) c U, where B5(0)isa S-ball about the origin. Let a be me minimum value of V 

on the boundary of B5(0), with a > 0 by equation A3. Let Ui = {x e B5(0)|V(x) < a}. 

Then no solution starting in Ui can meet the boundary of B5(0) since V is 

nonincreasing by equation A4. Therefore, the origin is stable. 

If equation A.5 holds as well then V is strictly decreasing on orbits in U\{0}. 

Let x(t) start in Ui\{0} and suppose x(t„)-»Zo e B5(0) for t„->co. (By the 

compactness of B5(0) such a sequence exists.) We now show that Zo = 0. By the 
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continuity of V and equation A. 5, V(x(tn)) -> V(zo) and V(x(t)) > V(zo) for all t > 0. If 

zo *■ 0, let z(t) be a solution starting at zo. For any s > 0, V(z(s)) < V(zo), so for y(s) 

starting sufficiently near ZQ, V(y(s)) < V(zo). If we let y(0) = x(tn) for sufficiently large 

n, then V(x(tn + s)) < V(zo), which is a contradiction. Therefore, zo = 0 is the only 

possible limit point of {x(t)|t > 0}, and such a limit exists by the compactness of B6(0). 

This proves the theorem  0 

While Lyapunov functions provide a useful technique for classifying equilibria, 

there is no known algorithm for finding them In mechanical systems or electrical circuits, 

potential or total energy is frequently a candidate, but in general no technique works 

uniformly. Even after 100 years, finding a Lyapunov function is still more of an art than a 

science. The following example is from Hirsch and Smale (1974). 

Example A.5. Consider the system 

x'(t) = 2yz - 2y 

/(t) = -xz + x 

z'(t) = -z3. 

The origin is clearly an equihbrium, but if we linearize the system near the origin via the 

"0   -2   0" 

Jacobian matrix then J|0=   1     0    0 , which has eigenvalues 0 and ±V2i. We are 

"o -2 0" 

1 0 0 

0 0 0 

unable to classify the origin via linearization, so we seek a Lyapunov function of the form 

V(x, y, z) = ax2 + by2 + cz2. Then 
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V = 2(axx' + byy' + czz') = 2[2axy(z - 1) - bxy(z -1) - cz4]. Since we want V < 0, 

letting c = 1 and 2a = b gives V = -z4 < 0, so V = x2 + 2V2 + z2 is a Lyapunov 

function, and the origin is stable. However, the Lyapunov function is not strict since 

V = 0 on the xy-plane, and we cannot determine (with this choice of V) if the origin is 

asymptotically stable.  D 

While no known algorithm exists to find Lyapunov functions, they have proven 

very useful over the past one hundred years in determining the stability of equilibria. See, 

for example, Arnold (1989), Bailey (1966), Bhatia and Szegö (1970), La Salle and 

Lefschetz (1961), Lehnigk (1966), and Yoshizawa (1966). 

In 1962, Bellman recognized that the requirement that a Lyapunov function be 

real-valued was too restrictive, and he proposed that a vector-valued function might 

provide more flexibility. He presented his results for square, linear systems and special 

cases of nonlinear systems. The following lemma is a special case of Theorem A. 3 for 

linear systems, but we present it in its entirety as it provides necessary and sufficient 

conditions for the solution of a differential equation to be majorized by a solution of a 

differential inequality. In this lemma, A s [ay] e Rmxm. The lemma is from Beckenbach 

and Bellman (1965). 

Lemma A.6. Let the system of differential equations 

dx/dt = Ax, x(0) = xo 

have a solution x(t). Let y(t) satisfy the differential inequality dy/dt > Ay, y(0) = xo. 

Then y(t) > x(t) for t > 0 if and only if a^ > 0 for i * j. 

21 



Proof. The system dy/dt = Ax + g(t), y(0) = xo has a solution of the form 

y(t) = XoeAt + j  e^1" s)g(s) ds, so we need to know when the elements of eAt are 
0 

nonnegative for t > 0. Since eAt = I + At + A2t2/2! + AY/3! + . . ., for small positive t 

eAt«I + At so that y(t)>x(t) imphes a,j>0. 

Conversely, assume a;j > 0 (the case aij > 0 follows via a limiting procedure) and 

let eAt= (eAt/N)N  For a fixed t, eA,/N = I + A(t/N) + A2(t/N)2/2! + . . . is positive (in the 

sense that all elements are positive for N sufficiently large). Since the product of positive 

matrices is positive, eAt is positive if a^ > 0 for i * j. This proves the lemma.  D 

The condition that a^ > 0 for i * j is precisely the condition of f^x) = Ax being 

quasimonotone nondecreasing in Theorem A. 3 for a linear function. Also, since a linear 

function is uniformly Lipschitz continuous, Picard's theorem applies and the maximal and 

minimal solution are the unique solution x(t) = XoeAt. 

We now state a stability theorem for vector Lyapunov functions, where we 

determine the stability of the trivial equilibrium solution to equation A. 1. 

Theorem A.7. (Lakshmikantham, 1965). Let g e C[R+ x R°, Rn], g(t, 0) = 0 

for all t, let g(t, u) be quasimonotone nondecreasing in u for each t e R+, and let 

u' (t) = g(t, u), u(to) = uo > 0. (A. 6) 

Let V e C[R+ x D, R" ] and V(t, x) be locally Lipschitz in x, with  £  Vj(t, x) -> 0 as 

||x|| -> 0 for each t; and let f e C[R+ x D, Rm], f(t, 0) = 0, and for (t, x) e R+ x D, 

V(t,x)<g(t,V(t,x)). 
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Then the stability of the trivial solution u = 0 of equation A.6 implies the stability of the 

trivial solution x = 0 of equation A. 1.  D 

In the more general theorem of Lakshmikantham (1965), various types of stability 

and conditional stability are proven as well. Instead of presenting the proof here, we 

present instead an example from Lakshmikantham (1974) that demonstrates the usefulness 

of a vector Lyapunov function over that of a scalar Lyapunov function. 

Example A.8. Consider the system 

dx/dt = e_tx + ysint - (x3 + xy2)sin2t, (A 7a) 

dy/dt = xsint + e_ty - (x2y + y3)sin2t. (A. 7b) 

We would Eke to determine the stability of the trivial solution to this system, so we 

attempt to find a scalar Lyapunov function, trying V(x, y) = x2 + y2. The best bound we 

can achieve with this choice of V is V < 2(e_t + |sint|)V. Clearly the trivial solution of 

du/dt = 2(e-t + |sint|)u is not stable, so we cannot conclude anything about the stability of 

the trivial solution of equation A.7 with this particular choice of scalar Lyapunov function. 

However, if we choose V(x, y) = 
V^y)" 

V2(x,y) 
= (1/2) 

(x + y)2 

(x-y)2 
as a vector 

Lyapunov function, then V i < 2(e-t + sint)Vi, and V 2 < 2(e_t - sint)V2. Since the trivial 

solution u = 0, w = 0 to the system 

du/dt = 2(e_t + sint)u 

dw/dt = 2(e-t - sint)w 

is clearly stable, the trivial solution x = 0, y = 0 to the system A7 is also stable.  D 
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While we used the quantity ^  V;(t, x) as a measure, we could have used some 

other measure such as max Vj(t, x) or Q(Vi(t, x),. . ., Vn(t, x)) where Q: R" -^ R+ 

and Q(u) is monotone nondecreasing in u. 

Vector Lyapunov functions offer a lot of flexibility when they can be found, but 

their true versatility is apparent in the case of conditional stability; i.e., when the stable 

manifold of the equihbrium has dimension less than m. Here we present the most basic 

results of this theory in terms of conditional stability, which are from Lakshmikantham 

(1965). For completeness we review some of the terminology. 

We wish to determine the stability of the (generally trivial) equihbrium solution to 

equation A. 1, 

x'(t) = f(t, x), x(t0) = xo, to > 0, (A. 1) 

where x e Rm and f(t, x) is defined and continuous in R+ x Rm. The trivial solution 

x = 0, where f(t, 0) = 0 for all t > 0, is conditionally equistable (where 8 in our 

definition of stabihty depends on s andt0)if and only if there exists a manifold M(m_k) 

through the origin of dimension (m - k) such that for each s > 0 and each t0 > 0 there 

exists a positive function 8 = 8(t0, s) that is continuous in to for each e, where ||x(t0)|| < 

8 and x(t0) e M<m-k) imply ||x(t)|| < s for all t > t0. 

We consider the comparison system 

r'(t) = g(t,r), r(to) = ro>0 (A.8) 
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where g(t, r) is quasimonotone nondecreasing in r e Rn. When g has this property, the 

solution r(t; to, ro) is maximal in the sense of component-wise majorization. We consider 

solutions of the form 

ri(t;to,r0) = 0 (i= 1, 2,. . ., k) (A.9a) 

r;(t; to, r0) > 0 (i = k+1,..., n) (A.9b) 

where m - k corresponds to the dimension of the manifold M(m_k). 

The comparison system A. 8 is equistable (where 8 in our definition of stability 

depends on s and to) if and only if for all s > 0, t0 ^ 0, there exists a positive function 

8 = 8(to, s), continuous in to for each s, suchthat   ^  r0. < 8 implies 
i=k+l 

n 

^  r;(t; to, r0) < s for t > t0. Other stability and conditional stability properties are 
i=l 

formulated similarly. 

The vector Lyapunov function V(t, x) e C[R+ x Rm, R ° ] is locally Lipschitz 

continuous in x, and its orbital derivative along the trajectories x(t) of equation A. 1 

satisfies 

V(t,x)<g(t,V(t,x)) (A. 10) 

where x(t) is any solution such that V(t0, xo) < r0. By Theorem A. 3 this ensures that 

V(t, x(t)) < r(t; to, r0) for t > t0. 

The stable manifold of the origin, M(m_k), is defined by the set of points for which 

V;(t,x) = 0 for i=l,2, ...,k<m (All) 
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The bound for the measure, b(r) is a continuous function, nondecreasing in r, 

such that 

b(r) > 0 for r > 0, and b(||x||) < £  Vi(t, x). (A. 12) 
i=l 

We might also have the bound satisfy b(r) -> oo as r -» oo, which is required for certain 

types of stability. 

While we have used the component-wise sum of the Lyapunov function as the 

measure, there are several equivalent choices we could have selected. In terms of this 

measure, we may require, for example, 

n 

£  Vj(t, x)->0 as ||x||->0 for each t > 0. (A. 13) 
i=l 

We now state the theorem on vector Lyapunov functions and conditional stability. 

Theorem A.9. (Lakshmikantham, 1965). Let assumptions A. 10 through A. 13 

hold. If the solution A 9 to equation A. 8 is conditionally equistable, then so is the 

equihbrium solution of equation A. 1 

Proof. Let s > 0. If ||x|| = s, then from assumption A. 12, we have 

b(e)<£  V;(t,x). (A 14) 

If the stability property holds, given b(s) > 0 and t0 > 0, there exists a positive function 

8 = 8(t0, e), continuous in to for each s, such that 

n 

£  rj(t; to, r0) < b(s) for t > t0, (A. 15) 
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provided ]T  r0 <8. Let x(t) beany solution of equation A. 1. Then it follows from 
i=k+l 

assumption A. 10 that 

2  V;(t,x(t))<|;  ri(t;to,r0) for t>t0 (A.16) 
i=l i=l 

whenever 

2  V;(t0, x(t0)) < 2  r0]. (A. 17) 
i=l i=l 

Now choose r0  (i = 1, 2,. .., n) to satisfy 

r0. = 0 for i= 1, 2,. . ., k and (A18) 

Z  ro^5- (A19> 
i=k+l 

By equation A. 17 and since Vj(t, x) > 0 for i = 1, 2,. . ., n, equation A. 18 implies that 

x(t0) e M(m_k) because of assumption All. From the monotonic property of b(r), 

assumption A. 12, and equations A. 17 and A. 19, we deduce that ||x(t0)|| < h'\S) = 8i. 

n 

By assumption A13, there exists a 82 = 82(to, 8) such that     sup   ^  V;(t0, x(t0)) < 8. 

Let S3 = min{8i, 82}. It then follows from the choices of r0.   and 83 that x(t0) e M(„.k) 

and ||x(to)||<83 implies every solution x(t) satisfies equation A.16. Suppose, if possible, 

that a solution x(t) of equation Al satisfying that x(t0) e M(n.k) and ||x(t0)||^83 is such 

that ||x(x)|| = s for some x > t0. Then from assumption A. 12 and equations A. 14, A. 15, 

n n 

and A. 16 follows the contradiction  b(s) < ^ V<(T> X(T)) - Z r'(T>to' r°) < k(£X 
i=l i=l 
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which proves the theorem  D 

Vector Lyapunov functions can also be used to determine certain boundedness 

properties of solutions of equation A. 1, and boundedness theorems analogous to the 

above theorems for stability are given in Lakshmikantham (1965). We now give an 

example from Lakshmikantham (1965) of the usefulness of a vector Lyapunov function in 

deterniining the conditional stability of an equilibrim. 

Example A.10. Consider the system of differential equations 

dx/dt = (1 + cos(t))x + (1 - cos(t))y + (cos(t) - l)z 

dy/dt - (1 - e_t)x + (1 + e_t)y + (e_t - l)z 

dz/dt = (cos(t) - e_t)x + (e_t - cos(t))y + (e_t + cos(t))z. 

We select as the Lyapunov function 

V(t, x, y, z) = 

Vi(t,x,y,z)' 

V2(t,x,y,z) 

V3(t,x,y,z) 

(x + y-z)2 

(x-y + z)2 

(-x + y + z)2 

Since ^  Vs = x2 + y2 + z2 + (x - y)2 + (y - z)2 + (z - x)2, we may use as the positive, 
i=l 

monotone function b(x, y, z) the square of the Euclidean norm, since 

3 

b(x, y, z) = x2 + y2 + z2 < ^  V;(t, x, y, z), so condition A. 12 is satisfied. Since 
i=l 

V i(t, x, y, z) = 2(x + y - z)(dx/dt + dy/dt - dz/dt) = 4(x + y - z)2 

V 2(t, x, y, z) = 2(x - y + z)(dx/dt - dy/dt + dz/dt) = 4cos(tXx - y + z)2 

V 3(t, x, y, z) = 2(-x + y + zX~dx/dt + dy/dt + dz/dt) = 4e_t(-* + y + z)2, 
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the comparison system is defined by 

gi(t,Vi,V2,V3) = 4V1(t>x,y,z) 

g2(t, V1; V2, V3) = 4cos(t)V2(t, x, y, z) 

g3(t,Vl5V2,V3) = 4e-tV3(t,x,y,z). 

The comparison system is therefore 

ri(t) 

r2'(t) 

r3'(t) 

^r'(t) = g(t,r)^ 

g1(t,r1,r2,r3)" 4r2 

g2(t,r15r2,r3) = 4 cos(t)r2 

g3(t,r1?r2,r3) L 4e_trs J 

Since each g, is only a function of r„ the function g is trivially quasimonotone 

nondecreasing, and satisfies V < g(t, V). 

Since the trivial solution to ri'(t) = gi(t, r) is clearly unstable, we must choose 

k = 1, so the initial condition is r0 =0, and ri(t; to, 0) = 0. This forces the condition 

Vi(t, x, y, z) = 0, which defines the two-dimensional manifold M(3_D by the condition 

(x + y - z)2 = 0 to be the plane x + y = z. The solution to the comparison system is 

ri(t) = 0, 

r2(t) = r0i exp[4(sin(t) - sin(t0))], 

r3(t) = r03exp[-4(e^-e-,°)]. 

3 

If s > 0, then for 5 = min{e/(2e8), s/(2exp(4e"to)}, r02 + r0j < 8 implies £  r;(t) < s 
i=l 

for t > t0. Since the conditional equistability condition is satisfied, the trivial solution to 

the original system is equistable if the initial point is on the manifold x + y = z.  D 
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The technique of vector Lyapunov functions is a proven technique in stability 

analysis in many fields, particularly for large scale dynamical systems and interconnected 

systems. See, for example, Michel and Miller (1977), Siljak (1978), Lakshmikantham, 

Matrosov, and Sivasundaram (1991), and Vidyasagar (1993). 

B. CONE-VALUED VECTOR LYAPUNOV FUNCTIONS 

While vector Lyapunov functions provide a great amount of flexibility over scalar 

Lyapunov functions, Lakshmikantham (1974) noted that the quasimonotonicity of the 

comparison system is not a necessary condition for the system to be stable. In particular, 

for a linear system, a matrix can still be a stability matrix (have all eigenvalues with real 

part less than zero) without having all the off-diagonal elements nonnegative. 

By requiring the vector Lyapunov function to have each V; > 0, we have restricted 

it to the cone R°. Lakshmikantham and Leela (1977a) investigated the possibility of 

selecting a cone other than R°  to overcome this limitation. The following theorems 

from Lakshmikantham and Leela (1977b) extend some of the previous results to cones 

other than R °. The first is the comparison principle corresponding to Theorem A.3 

through the cone K. 

Theorem B.l. (Lakshmikantham and Leela, 1977b). Let f e C[R+ x R
n, Rn] be 

quasimonotone nondecreasing in x relative to K for each t e R+, and let [t0, oo), t0 > 0, 

be the largest interval of existence for the maximal solution r(t; to, xo) of equation A. 1 

relative to K Further, let p e C[R+, Rn] and D_p(t) < f(t, p(t)) for t > t0. Then 
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p(t0) < xo implies p(t) < r(t; t0, Xo) for t > t0.  D 
K JK 

The quasimonotonicity of f(t, x) in x relative to the cone P does not necessarily 

imply the quasimonotonicity of f(t, x) in x relative to the cone Q when 

PcQ. However, if P c Q, then the order relations relative to P do imply the same 

order relations relative to Q. We prove these observations in Section D, and from them 

comes the following corollary. 

Corollary B.2. Let P and Q be two cones in Rn such that PcQ. Let the 

assumptions of Theorem B.2 hold with K replaced by P. Then p(t0) < xo implies 
p 

p(t) < r(t; to, xo) for t > t0.  D 

We now state the comparison theorems and stability results for cone-valued vector 

Lyapunov functions from Lakshmikantham and Leela (1977b). We begin with the system 

of differential equations 

x'(t) = f(t, x), x(t0) = xo, (A.1) 

where f e CfR+ x D, Rm]. If K is a cone in Rn, n < m, and the cone-valued vector 

Lyapunov function V e C[R+ x D, K], we define for (t, x) e R+ x D, the orbital Dhii 

derivative as D*V(t, x) = lim sup (l/h)[V(t + h, x + hf(t, x)) - V(t, x)]. The first result 
h->0+ 

follows. 

Theorem B.3. (Lakshmikantham and Leela, 1977b). Assume that V(t, x) 

satisfies a local Lipschitz condition in x relative to K and for (t, x) e R+ x D, 

D+V(t,x)|g(t,V(t,x)), (B.l) 
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where g e C[R+ x K, Rn], and g(t, u) is quasimonotone in u with respect to K for 

each t e R+. If r(t; t0, uo) is the maximal solution of u'(t) = g(t, u), u(0) = uo relative to 

K, and x(t; to, xo) is any solution of equation A. 1 such that V(t0, xo) < iio, then on the 

common interval of existence 

V(t, x(t; to, xo)) | r(t; t0, uo). (B.2) 

Proof. Let x(t) = x(t; t0, xo) be any solution as above. Set p(t) = V(t, x(t)). For 

small h > 0, since V(t, x) is locally Lipschitz in x with respect to K, then 

p(t + h) - p(t) | L||x(t + h) - x(t) - hi(t, x(t))|| + V(t + h, x(t) + hf(t, x(t))) - V(t, x(t)). 

From this and equation B. 1 follows the inequality D+p(t) < g(t, p(t)). Applying Theorem 

B. 1 gives the conclusion B.2.  D 

The following variant of this theorem offers more flexibility in applications, and its 

proof follows from Corollary B.2. 

Theorem B.4. (Lakshmikantham and Leela, 1977b). Let P and Q be two cones 

in Rn such that P c Q. Suppose that V e C[R+ x D, Q], V(t, x) satisfies a local 

Lipschitz condition in x relative to P, and D^t, x) < g(t, V(t, x)) for (t, x) e R+ x D, 
p 

where g e C[R+ x D, Rn] and g(t, u) is quasimonotone nondecreasing in u relative to 

P for each t e R+. If r(t; to, uo) is the maximal solution as in Theorem B.3 relative to P 

and x(t; to, xo) is any solution of equation A. 1 such that V(t0, xo) < Uo, then 
p 

V(t, x(t; to, xo)) < r(t; to, Xo) (B.3) 
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on the common interval of existence of r(t; to, uo) and x(t; to, Uo). When Q = R °, 

relation B.3 implies the componentwise inequalities V(t, x(t; t0, xo)) < r(t; t0, uo).  □ 

We now state the first stability results for cone-valued vector Lyapunov functions. 

The first theorem extends the result of Theorem A. 7 for equistabihty. Its proof follows 

from that of Theorem A. 9 and Theorem B.3. 

Theorem B.5. (Lakshmikantham and Leela, 1977b). Let the assumptions of 

Theorem B.3 hold. Let f(t, 0) = 0 and g(t, 0) = 0, and assume that for some 

§o e K*   and (t, x) e R+ x D, 

b(||x||)<<<t,0,V(t,x)><a(t,||x||), (B.4) 

where a e C[R+ x [0, p), R+], b e C[[0, p), R+], a(t, 0) = 0, b(0) = 0, a(t, u) and b(u) are 

increasing in u, and p = sup{||x|||x e D}. Let the trivial solution u = 0 of u'(t) = g(t, u) 

be (|)o-equistable, that is, given s >0, t0 ^ 0, there exists a 8 = 8(t0, s) > 0 such that 

(<|>o, Uo) < 5 imphes (<j>o, r(t; to, uo)> < s for t > to. Then the trivial solution x = 0 of 

equation A. 1 is equistable.  D 

The following theorem again increases our flexibility when employing cone-valued 

vector Lyapunov functions. The proof follows from those of Theorems A. 9 and B.4. 

Theorem B.6. (Lakshmikantham and Leela, 1977b). Let the assumptions of 

Theorem B.4 hold, and let f(t, 0) = 0 and g(t, 0) = 0. Assume equation B.4 is satisfied 

for some ^eQj   and that the trivial solution usOof u'(t) = g(t, u) is (j)0- equistable, 

with <t>0eQ*. Then the trivial solution x = 0 of equation A. 1 is equistable.  D 
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If K = R°,then <j>o = [l, 1,. . ., 1]T, and Theorem B.5 reduces to Theorem A.7. 

D 

In this case, condition B.4 becomes b(||x||) < ^ V;(t, x) < a(t, ||x||). We could again use 
i=l 

measures other than the component-wise sum of the vector Lyapunov function. In 

Theorem B.6, if PcQ = R°,we can remove the requirement for quasimonotonicity if 

we select an appropriate cone P depending on the nature of g(t, u) as shown in the 

following example from Lakshmikantham and Leela (1977b). 

Example B.7. Consider the system 

ui'(t) = anui + ai2u2 s gi(t, ui, u2), Ui(t0) = u0i, (B.5a) 

u2'(t) = a2iui + a22u2 s g2(t, ui, u2), u2(t0) = uo2. (B.5b) 

If Q = R*,and a2i and aJ2 are not nonnegative, then the function g(t, u) is not 

quasimonotone nondecreasing in u = (ui, u2) relative to Q. Hence, the differential 

inequalities 

D+V,(t, x) < g,(t, V,(t, x), V2(t, x)), (B.6a) 

D+V2(t, x) < g2(t, V,(t, x), V2(t, x)) (B.6b) 

do not yield the componentwise estimates of V(t, x(t)) in terms of the solution of 

equation B.5. However, if there exist two numbers a and ß suchthat 0<ß<a and 

cc2a2i+ aa22>aan+ ai2, (B.7a) 

ß2a2i + ßa22>ßa„ + a12, (B.7b) 

then these conditions hold with no restriction on the nonnegatrvity of a2i and a]2. Let 

the cone PcQ = R2
+ be defined by P = {u e R^. |ßu2 < Ui < au2}. The boundaries for 

this cone are au2 = ui and ßu2 = ui. On the first boundary, let ^> = (-l/a, 1) so 
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<(-l/a, 1), (ui, ui/a)> = 0, and <(-l/cc, 1), (anUi + a^ui/a, a2iUi + a22Ui/a)> > 0 for all 

u^O. This reduces to condition B.7a, and we similarly obtain condition B.7b. Thus, if 

the inequalities B.6 are relative to P, we obtain component-wise estimates on V as 

V;(t, x(t)) < r;(t; to, V(t0, x<>)) (B.8) 

by Theorem B.4. If ai2, a2i > 0, then equation B.8 is the one we would obtain through the 

standard method of vector Lyapunov functions.  D 

While it appears to be a nontrivial exercise to construct an appropriate cone for a 

system of differential equations, this method still carries much merit as it provides a further 

increase in our flexibility to determine the stability of equilibria. 

These are the most basic results from the theory of cone-valued vector Lyapunov 

functions we require to motivate the problem of finding a nonnegative cone with respect 

to which a linear differential operator on Rn is quasimonotone nondecreasing. Further 

directions in the theory of vector Lyapunov functions have been explored recently. In 

particular, using higher derivatives of vector Lyapunov functions, Köksal and 

Lakshmikantham (1996) showed how to find a particular cone with respect to which a 

given comparison system (resulting from taking higher derivatives of a decrescent 

Lyapunov function) is quasimonotone. 

Furthermore, there has been much research on nonlinear comparison systems. See, 

for example, Hatvani (1984), Deimling and Lakshmikantham (1990), Lakshmikantham, 

Leela, and Ram Mohan Rao (1991), and Lakshmikantham and Papageorgjou (1994). 

However, we focus on finding cones for vector Lyapunov functions when the comparison 

system is linear. 
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C. THE QUASIMONOTONICITY OF LINEAR DIFFERENTIAL SYSTEMS 

The problem of finding a cone in Rn with respect to which a given linear operator 

is quasimonotone nondecreasing (or essentially nonnegative) and many related problems 

have been addressed in various forms in the literature in recent years. For example, 

Vandergraft (1968) following Birkoff (1967) gave sufficient conditions for such a cone to 

exist without further restrictions on the cone K. However, Heikkilä first addressed this 

problem for the application of vector Lyapunov functions, with the requirement that the 

cone be proper, simplicial, and nonnegative. He stated this to be sufficient for the 

application of vector Lyapunov functions, and in the next section, we justify this claim In 

this section, we summarize Heikkilä's results. 

Consider a linear mapping A e Rnxn and a cone K generated by n vectors b; in 

Rn suchthat 

K = {wibi + .. . + wnbn|wi > 0}. (C.l) 

For C. 1 to define a proper, simplicial cone in Rn, it is necessary and sufficient that the bj 

be linearly independent. The first result gives necessary and sufficient conditions for a 

linear operator to be quasimonotone with respect to a cone in Rn. 

Theorem C.l. (Heikkilä, 1980). A linear mapping A: Rn-> R" is 

quasimonotone nondecreasing relative to the cone generated by a basis {bi,. . ., bn} of 

Rn if and only if the matrix of A relative to this basis has all off-diagonal elements 

nonnegative. 

Proof. Let A = [ay] and C = [Cy] be the n x n matrices of A relative to the 

standard basis of Rn and the basis {bi,..., bn} respectively. Then C = B_IAB, where 
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B e R1™1 has bj as its jth column. Let §J be the ith row of B \ so 

<*i,bj> = 5ij, (C.2) 

and 

<<t)i,Abj> = cij. (C.3) 

Equations C.2 and C.3 imply that fa e K„   for each i = 1,. . ., n. 

Assume cy- > 0 for i ^ j, and let u e dK be given. Then if u = ^jT  Wjbj, at least 

one coefficient w; must be zero. Then (fa, u> = ^  Wj(fa, bj> = 0 and 

(fa, Au> = ^ Wj<<|)i, Abj) = ]T  WjCy > 0 from equations C.2 and C.3. Thus, the 
j=i j=i 

condition cy- > 0 for i *= j implies the quasimonotonicity of A relative to K. 

Conversely, let at least one off-diagonal element of C, say cy, is negative. Then 

by equation C.3, (fa, Abj) < 0. Since the mapping u —>• (fa, Au> is continuous, there 

exists a S>0 suchthat ||u-bj||<8 imphes 

(fa, Au><0. (C.4) 

In particular, equation C.4 holds for u e dK given by u = ]T  wkbk, tvith w; = 0, 
k=l 

Wj = 1, and for k ^ i, j, wk = 67(n||bk||). Since all the coefficients wk, except Wi, are 

positive, then for any beKj  for which <b, u> = 0, it follows that (b, bk> = 0 for all 

k * i. Thus, b must be of the form b = afa for a > 0, so by equation C.4, 
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(b, Au) = cc(<j)i, Au) < 0. This shows A is not quasimonotone nondecreasing relative to 

K unless Cy > 0 for i * j, completing the proof.  □ 

Salzmann (1972) proved the same result for nonnegative matrices, and he 

presented it in terms of positive operators on simplicial cones. Furthermore, in his 

discussion of matrices with invariant cones, Vandergraft (1968) proved a similar result. An 

immediate consequence is the following. 

Corollary C.2.   (Heikkilä, 1980). If a linear mapping A: Rn->Rn has n 

linearly independent eigenvectors bi,. . .bn, then A is quasimonotone nondecreasing 

relative to the cone generated by these eigenvectors. 

Proof. In this case, the matrix of A relative to {bi,. . ., bn} is diagonal.  D 

We can also express a necessary condition for monotonicity in terms of the 

eigenvectors of A. This result follows from the result from Perron (1907) and Frobenius 

(1912) on the theory of nonnegative matrices, which states that a nonnegative matrix has a 

nonnegative eigenvector corresponding to a real eigenvalue of greatest modulus (see 

Theorem n.B.2). 

Corollary C.3. (Heikkila, 1980). If a linear mapping A: Rn->Rn is    • 

quasimonotone nondecreasing relative to a cone of type C. 1, then A has a non-zero 

eigenvector in this cone, and hence a real eigenvalue. 

Proof. If A, = ir'AB is quasimonotone nondecreasing where B = [bi,. . ., bn], 

choose a positive number r so large that C = A, + rl is nonnegative. Then C has a 

nonnegative eigenvector xi > 0, so A, (and hence A) has an eigenvector 

yi = Bxi e K(B).  D 
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We now consider linear differential systems. By the quasimonotonicity of the 

linear system 

u'(t) = A(t)u, t>0, (C.5) 

relative to a cone K we mean that for each t > 0 the linear mapping A(t) is 

quasimonotone nondecreasing relative to K. The next result for cones contained in R° 

follows from Corollaries C.2 and C.3. 

Corollary C.4. (Heikkilä, 1980). For the quasimonotonicity of the system C.5 

relative to some cone in R°  it is necessary that for each t > 0 at least one eigenvector 

of A(t) belongs to R °, and sufficient that A(t) has n linearly independent eigenvectors 

in R", which do not depend on t.  D 

Given a nonsingular matrix B e Rnxn, the mapping u = Bv transforms equation 

C.5 into the equivalent form 

v'(t) = B_1A(t)Bv, t > 0. (C.6) 

But B_1A(t)B is the matrix of the linear mapping A(t) in the basis of Rn formed by the 

column vectors of B. Moreover, if B is nonnegative, these vectors belong to R °. 

Hence, the next result follows from Theorem C. 1. 

Theorem C.5. (Heikkilä, 1980). There exists a cone K inR°   generated by n 

linearly independent vectors, relative to which the system C.5 is quasimonotone 

nondecreasing if and only if there exists a nonsingular matrix B such that the off-diagonal 

elements of the coefficient matrix of the system C.6 are nonnegative. Moreover, the 

column vectors of B generate K.  D 
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This special case of considering cones in R °  lets us apply Theorem B.6 when the 

vector Lyapunov function satisfies a differential equality. 

D. STABILITY THROUGH LINEAR COMPARISON SYSTEMS 

The results of Heikkilä (1980) presented in Section C address the problem of 

finding a cone with respect to which a linear comparison system is quasimonotone, and 

provide a necessary condition and a sufficient condition for such a cone to exist. Köksal 

and Lakshmikantham (1996) constructed cones for comparison systems generated by 

taking derivatives of Lyapunov functions, and Köksal and Fausett (1995) extended these 

results using generalized eigenvectors. 

Heikkilä (1980) states (without proof) that for stability results it is sufficient to 

consider nonnegative cones. This section gives our proof of this result, and shows it is 

sufficient to consider square, linear comparison systems. 

We wish to determine the stability properties of the origin as a solution to 

x'(t) = f(t,x) (A.1) 

where f e C[R+ x Rm -» Rm] and f(t, 0) = 0. To do this we seek a vector Lyapunov 

function V(t, x) e C[R+ x Rm, K] which is locally Lipschitz in x with respect to a cone 

K c Rn, and which satisfies the differential inequality 

V |g(t,V) (D.l) 

where V  is the orbital derivative of V along trajectories x(t). If g(t, u) is 

quasimonotone nondecreasing with respect to K, the stability of the trivial solution of 
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u'(t) = g(t,u) (D.2) 

may be used to determine the stability of the origin x(t) = 0 in equation A. 1. We require 

certain conditions on the Lyapunov function V for this result to hold, for example, 

KIND^ Z M^OMI) (°-3) 
i=l 

where a and b are as in Theorem B.5. 

We let the comparison system A.3 be a square, linear system, or g(t, u) = A(t)u 

where A: R+xRn4 Rn, or for all t, A e Rnxn. Let V e R°   so the quasimonotonicity 

of A(t) implies its off-diagonal elements are nonnegative, and the inequality D. 1 is 

component-wise majorization (otherwise we can change bases so V e R ° ). 

If A(t) is a stability matrix, but does not possess the required quasimonotonicity 

properties, we seek a cone KcR" other than R*  for which inequality D. 1 holds, 

relative to which A(t) is quasimonotone nondecreasing, and which contains V(t, x) 

while mamtaining its locally Lipschitz property. The following lemma discusses the effect 

of a linear transformation on an inequality. 

Lemma D.I. If x < y, then for a nonsingular matrix B e Rnxn, Bx   <   By, 
R; K(B)    J' 

where K(B) c Rn is the cone generated by the columns of B. 

Proof. Since Bx   <   By <=> By - Bx e K(B) and (y - x) e R°, then from the 
K(B) 

i=l 

linearity of B, B(y - x) e K(B) = {u = ^  a;bi|a; > 0, b; is a column of B}. Letting 
i= 

a, = (y - x); > 0 completes the proof.  D 
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We can transform a differential system v'(t) = Av, with a nonsingular matrix B, 

where y = Bv, so y'(t) = BAB_1y- Such a transformation is called a Lyapunov 

Transformation and the stability of the origin in one system implies the stability of the 

origin in the other. In this case, we say the systems are equivalent in the sense of 

Lyapunov (see Gantmacher, 1959). 

We now show that a simple coordinate transformation cannot be used to construct 

a cone which satisfies the hypothesis of Theorem B.6 when the original system does not 

possess the required quasimonotonicity property. 

Proposition D.2. Assume a vector Lyapunov function satisfies the inequality 

V  < A(t)V, (D.4) 
R° 

but that A(t) is not quasimonotone nondecreasing with respect to R ° . Then there does 

not exist a Lyapunov transformation Y = B_1 V for which Y    <    C(t)Y and C(t) is 
K(ET') 

quasimonotone nondecreasing with respect to K(B_1). 

Proof. If such a transformation existed, then with C(t) = B~'A(t)B, multiplying 

inequality D.4 by B"1 and applying Lemma D. 1 gives 

Y=B_1V   <_  B_1A(t)V - B_1BC(t)B_1V = C(t)Y. 

However, in order that C(t) be quasimonotone nondecreasing with respect to K(B_1), by 

Theorem C. 1 it is necessary and sufficient that BC(t)B_1 have its off-diagonal elements 

nonnegative. But BC(t)B_1 = A(t), which, by assumption, is not quasimonotone 

nondecreasing with respect toR°.  D 
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Hence, the problem is to find an appropriate cone with respect to which the 

function A(t) is quasimonotone nondecreasing, and for which the differential inequality 

D. 1 and all other required properties are preserved. The following case, where the 

inequality D. 1 is reahy an equality, is frequently found in applications. 

If the orbital derivative of a Vector Lyapunov function V e R° satisfies V = AV 

where A is a stability matrix, then the following results give conditions under which the 

hypotheses of Theorem B.6 are satisfied, and the solution x(t) = 0 to equation A. 1 is a 

stable equilibrium. 

First, it is evident that if V =AV then BV < BAV for ah nonsingular 

transformations B and all cones K. We also need the following result. 

Lemma D.3. If V(t, x)eR°  is locally Lipschitz in x with respect to R°, then 

for any nonsingular matrix B e Rnxn, Y = BV is locally Lipschitz in x with respect to the 

cone K(B). 

Proof. Evidently, V(t, x) e R°  implies Y = BV e K(B). Since V is locally 

Lipschitz with respect toR°, this implies there exists an L e R°   such that 

L||x- y|| - (V(t, x) - V(t, y))eR'+. Letting L = BL e K(B) yields 

L||x - y|| - (Y(t, x) - Y(t, y)) e K(B). D 

We also require the result that the Lipschitz property is preserved through cone 

containment. 

Lemma D.4. If V(t, x) e P is locally Lipschitz in x with respect to the cone 
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P c Rn, and PcQ where QcR" is a cone, then V(t, x) is locally Lipschitz in x with 

respect to Q. 

Proof. If V(t, x) is locally Lipschitz in x with respect to P implies there exists 

an L e P such that L||x - y|| - (V(t, x) - V(t, y)) e P, then L e Q and 

L||x-y||-(V(t,x)-V(t,y))eQ. D 

The following result appears as a remark in Lakshmikantham and Leela (1977). 

Lemma D.5. If P and Q are cones in R" with PcQ, then x < y implies 

x < y. 
Q 

Proof. x<y=>y-xeP=>y-xeQ=>x<y.   D 
P Q    J 

We now demonstrate the well-known result that if P and Q are cones in Rn with 

PcQ, that the quasimonotonicity of a mapping A e Rnxn with respect to Q does not 

imply the quasimonotonicity of A with respect to P. Let P = R*   and let Q be the 

cone generated by the columns of B 
1     0 

-3    1 
, hence P c Q. Let A = 

"o r 
-4    -6 

? 

[-3     ll 
iH = 

5     -3_ 
which is not quasimonotone nondecreasing with respect to P. Since B  AB 

then by Theorem C. 1 A is quasimonotone nondecreasing with respect to Q. 

Similarly, if P <= Q are cones in Rn, the quasimonotonicity of a mapping with 

respect to P does not imply the quasimonotonicity of the mapping with respect to Q. 

Letting A 
-2    2 

1     3 
and choosing P and Q as above, A is quasimonotone 
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nondecreasing with respect to P, but B 1AB 
-8     2 

-32   9 
, so by Theorem C. 1, A is not 

quasimonotone nondecreasing with respect to Q. 

Following Heikkilä (1980) and Köksal and Fausett (1995) we present the 

following result. 

Proposition D.6. Suppose a Vector Lyapunov function V(t, x) e R"   satisfies 

• 
V = A(t)V where A(t) is a stability matrix which is not quasimonotone nondecreasing 

with respect to R ° . If the generalized left eigenvectors of A(t) are all contained in R °, 

there exists a transformation Y = B_1V and a cone K = R°   such that the hypotheses of 

Theorem B.6 are satisfied. 

Proof. The matrix A has as its Jordan canonical form J = B^AB, where the rows 

of B"1 are the generalized left eigenvectors of A and the columns of B are the 

generalized eigenvectors of A (see Horn and Johnson, 1991). By assumption, B~   is a 

nonnegative matrix, so K(B"')cR°. Hence, the transformation Y = B_1V yields the 

differential equation Y = JY. Then Y e K(B-1) is locally Lipschitz in x with respect to 

K(B-1) by Lemma D.4, and with respect to R°  by Lemma D.5. Since J is 

quasimonotone nondecreasing with respect toR°, and Y ^ JY, we use Y as the 

vector Lyapunov function with K = R°, satisfying the conditions of Theorem B.7. The 

only remaining detail is the measure used to bound Y, so the following remark completes 

the proof.  D 
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RemarkD.7. Since PcQ implies Q cP , we cannot, in general, find a 

<|) e Q0 =R°\{0} suchthat <<J>,B  V> preserves the original measure 

n 

<(|)o, V> = 2]  V; with <t»o = [1,. . ., 1]T. This is because <j> = B$0 is not generally in 
i=l 

Q * = R ° \{0}, since the nonnegativity of B"1 does not imply the nonnegatrvity of B. 

However, had we used the equivalent measure max | V;| = max V;, then using as the new 
i i 

measure max |Y;|, since each Y; is a positive linear combination of the Vj, preserves the 

result of Theorem B. 6 by scaling a and b appropriately in equation B.4.  D 

While we used the Jordan form to achieve quasimonotonicity with respect to R°, 

this result may be extended to any case where S = B_1AB, S has nonnegative off-diagonal 

elements, and the columns of B"1 are contained in R °. This follows from Theorem C.5 

of Heikkilä (1980), who further shows that this construction is always possible in the case 

n = 2 if A has one eigenvector in the first quadrant and at most one of aJ2 and a2i is 

negative (in this case it is necessary and sufficient that both eigenvectors be nonnegative). 

This is an application of Corollary C.5 to square systems with differential equalities. 

In the case where we do not begin with an equality in equation D. 1, this 

construction is generally not possible. Instead, given V  < A(t)V, we now must find a 

cone with respect to which A is quasimonotone nondecreasing, on which V is defined 

and locally Lipschitz in x, and on which the inequality D. 1 still holds. The result of 

Köksal and Lakshmikantham (1996) is a special case of this. 
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We define the following four properties for a linear comparison system for a vector 

Lyapunov function V and a cone K 

(PI) V is defined on K; 

(P2) V is locally Lipschitz with respect to K; 

(P3) V < A(t)V; and 

(P4) A(t) is quasimonotone nondecreasing with respect to K. 

If we find a cone K = P for which properties (PI) through (P3) hold, then in 

order to find a cone K = Q for which properties (PI) through (P4) hold it is necessary 

that PcQ. This is because if a cone Q containing P with respect to which A(t) is 

quasimonotone nondecreasing exists, then by Lemmas D.4 and D.5, properties (PI) 

through (P3) hold for Q, and we can apply Theorem B.6. 

This is essentially what was done in Proposition D.2 where the vector Lyapunov 

function Y eK(B)cR"  satisfied Y   <   JY, and J was quasimonotone 
^    ' + K(B) 

nondecreasing with respect to R°. Letting K(B) = P and R°+ =Q satisfies properties 

(PI) through (P4). 

We first state an obvious result for finding such a cone, which may be useful in 

applications. The proof follows from the above remarks that PcQ. 

Proposition D.8. If V e P satisfies properties (PI) through (P3) for K = P, and 

if the cone K(B) generated by the generalized eigenvectors of A contains P, then 

properties (PI) through (P4) hold for K(B). D 

47 



This generalizes to any transformation S = B_1AB where S has nonnegative off- 

diagonal elements and K(B) contains P. Following Heikkilä (1980) we next show that 

to find a cone containing R°  with respect to which A is quasimonotone nondecreasing, 

it is necessary and sufficient to find a cone contained in R°  with respect to which AT is 

quasimonotone nondecreasing. We use Lemma H.A. 3 which states that K(B) cRJ if 

and only if K(B_1) DR°. Since it is presumably easier to find a cone contained in R° 

(the matrix of its generators is nonnegative) than one containing R °  (as we require) this 

proposition is useful in applications. 

Proposition D.9. The matrix A is quasimonotone nondecreasing with respect to 

a cone K(B~ )DR° if and only if AT is quasimonotone nondecreasing with respect to a 

cone K(BT)cR°. 

Proof. Let A   be quasimonotone nondecreasing with respect to a cone 

K(BT) c R °. Then by Theorem C. 1, C = (BT)_1ATBT has all of its off-diagonal elements 

nonnegative, as does CT = BAB-1.  Since K(BT)cRJ  implies K(B)e Ruthen 

K(B_1) 3 R °   and A is quasimonotone nondecreasing with respect to K(B_1). 

Reversing the argument completes the proof.  D 

Hence we can apply Corollary C.4 and Theorem C.5 of Heikkilä (1980) to the 

search for an appropriate cone, as the generalized eigenvectors of AT, or the generalized 

left eigenvectors of A, being contained in R°   is a sufficient condition for the existence 

of a cone for which property (P4) holds. 
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Because it is the case most frequently encountered in applications, we have 

assumed P = R° to establish properties (PI) through (P4). Evidently, if PcR° the 

above results still hold; however, if P => R °  then the construction is not as simple. 

Since for two cones P and Q,PcQ implies Q* c P*, then if P £ R °, instead 

of seeking a set of vectors b; e R"  suchthat (BT)_1ATBT has nonnegative off-diagonal 

elements, where the b; are the columns of BT, we must find vectors b; e P* to construct 

an appropriate cone. We therefore conclude the discussion of square linear comparison 

systems with the following extension of Proposition D.9. 

Theorem D.10. Given a vector Lyapunov function V and a cone PcR™ for 

which properties (PI) through (P3) hold, in order to find a cone QDP with respect to 

which the matrix A is quasimonotone nondecreasing it is necessary and sufficient to find 

m independent vectors b; e P* such that if BT = [bi... bm], then C = (BT)_1ATBT has 

nonnegative off-diagonal elements. 

Proof. If b; e P* are such that C = (BT)_1ATBT has nonnegatfve off-diagonal 

elements, then so does CT = BAB-1, and A is quasimonotone nondecreasing with respect 

to K(B_1) by Theorem C.l. Since K(B_1) = K(BT)*, and since K(BT)^P* implies 

K(BT)* 3 P, then K(B_1) 3 P. Reversing the argument completes the proof.  D 

Proposition D.9, where P = R°  is a special case of the above result, since 

R° =R°*. Finding an invertible matrix whose columns are contained in P   is perhaps 

less difficult than finding one whose columns generate a cone containing P. The next 

result follows from Corollaries C.3 and C.4 of Heikkilä (1980). 
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Corollary D.H. For property (P4) to hold relative to some cone QDP, where P, 

Q, V, and A(t) are as above, it is necessary that at least one eigenvector of AT(t) belong 

to P   and sufficient that AT(t) has n eigenvectors in P*, which do not depend on t.  D 

To show quasimonotonicity with respect to an appropriate cone, we only show 

such a cone exists. In an equivalent approach we could use the cone to transform the 

vector Lyapunov function and the comparison system as we did in Proposition D.2. This 

technique now works, since the cone used to make the transformation is contained in our 

original cone, and the inequality is preserved. The following corollary is an extension of 

Theorem 2.8.3 of Lakshmikantham, Matrosov, and Sivasundaram (1991). 

Corollary D.12. If a vector Lyapunov function V exists such that properties 

(PI) through (P3) hold for some cone P, and if a matrix B exists as in Theorem D. 10, 

then the vector Lyapunov function Y = (BT)_1 V gives the same conclusion about the 

stability of the trivial solution to Equation A. 1.  D 

This approach has the advantage of directly yielding the stable manifold of the 

origin in the case of conditional stability, but in the usual case it involves an additional 

computational step. Since the ideas are equivalent, we continue the approach of showing 

such a cone exists. 

We continue our analysis of linear comparison systems considering the case where 

the system is rectangular instead of square. Let a nonnegative vector Lyapunov function 

V(t, x) be such that 

V: R+xRffl->R°, (D.5) 

whose orbital derivative satisfies inequality D.4, V < A(t)V. Let A(t) € Rnxn with 
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A A 

0    •••    0 

(D.6) 

where A e Rpxp, A e Rpxq, 0 is a q x p zero matrix, and  0  is a q x q zero matrix, 

with p + q = n. 

Such a comparison system is possible when the orbital derivative satisfies V j < 0 

for p < j < n. If we have equality in any of these components, or if Vj = 0 for some j, 

this is a conserved quantity for our original system A. 1, and the theory of conservative 

systems to applies to our analysis. While it is necessary that a conserved quantity be non- 

constant on open sets, a component of a non-trivial vector Lyapunov function certainly 

satisfies this requirement, so this more powerful theory applies to the problem Hence, we 

assume the orbital derivative satisfies inequalities in its last q components. 

This rectangular p x n system can be treated as a square system D.4 where A is 

given by equation D.6. Since we address such systems in Chapter IV, where we give a 

complete theory for reducible, square matrices, there is no need to consider the smaller, 

rectangular system. 

We similarly dismiss the case where the matrix A in equation D.5 is of the form 

A 

A 

0 

0 
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where A e Rqxp and the last q columns of A contain zeroes. A is not a stability 

matrix since a(A) = a( A) ^ {Oi,..., 0q}, and A may not possess quasimonotonicity 

properties, even if A   does. However, letting Y; = V; for 1 < i < p yields the square 

system Y < A Y, to which we may apply the theory for square comparison systems, 

regardless of the nature of A. Hence, we gain nothing by keeping the last q 

components of V, so we may discard them, leaving the imbedded p x p square system. 

We have now established the setting for the problem of finding a cone with respect 

to which a linear comparison system is quasimonotone nondecreasing. It is sufficient to 

consider square linear systems, and considering the transpose of the comparison system, it 

is sufficient to find a cone contained in the nonnegative orthant. The next two chapters 

present our solution to this problem 
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IV. THE QUASIMONOTONICITY OF A SQUARE, LINEAR OPERATOR 
WITH RESPECT TO A NONNEGATTVE CONE: THE REAL SPECTRUM 

For a matrix A e Rnxn we address the problem "when is A quasimonotone 

nondecreasing with respect to a cone in R°?" (or equivalently, when is it essentially 

nonnegative under a nonnegative change of basis?), hi Chapter IQ we motivated this 

question with the application of determining stability in dynamical systems via the 

technique of cone-valued vector Lyapunov functions, and in Chapter VI we present 

further applications of this problem. 

Using Perron-Frobenius theory, Heikkilä (1980) showed a necessary condition (the 

matrix A has a nonnegative first eigenvector) and a sufficient condition (the matrix A 

has all nonnegative eigenvectors) for such a cone to exist (see Corollary ni.C.2) where the 

first eigenvector is the nonnegative eigenvector xi associated with the (real) eigenvalue 

X,i of greatest real part. 

The next two chapters present our solution to this problem Using constructive 

techniques, we bring together the necessary and sufficient conditions Heikkilä gave for 

n > 2, and we address the complex spectrum for the first time in this setting. This chapter 

addresses the case where the spectrum of A is real, or a(A) c R, and Chapter V 

addresses the general spectrum 

A.        MATRICES WITH A POSITIVE FIRST EIGENVECTOR 

We begin with the case where the first eigenvector is positive, or xi > 0. We use a 

sequence of changes of basis Am+i = B^1
1AmBm with K(Bm) c R °, which ensures the 
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change of basis is always nonnegative. The following lemma is the key to the 

construction. 

Lemma A.l. Let B = [x, b2,. . ., bn] e R
nxn be nonsingular with x e (R^)° and 

B-' = 

Then there exists a unit basis vector ^ e Rn such that the matrix 

Dl = (±X£ 

(±X>I 

has a nonnegative inverse DeR™, where (±) indicates an appropriate choice of sign 

for each <J>;. 

Proof. Since xe(R")° and <<bi, x> = 0 for i = 2,..., n, then ifceR". 

Hence, each §-, has components of both signs. Since each hyperplane § f  contains 

x e (R°)°, then each of these hyperplanes intersects at least (n - 1) of the coordinate 

hyperplanes ej"  in R°. (This is evident from the mixed signs in <}>; for i = 2,..., n.) 

Therefore, there are (n - 1) hyperplanes which each intersect at least (n - 1) of the 

(ej):); =ej nR°. By the pigeonhole principle, at least one (ej)^  intersects each <j>|. 

Let this unit basis vector be ek. Since we require (fa, dj) = 1 where dj is a column of D 

for i = 2,. .., n, to ensure dj e (ek)+  we select the appropriate sign for each <J)j. 

Therefore, D_1 has as its inverse D = [di, d2,..., dn], which is nonnegative.  D 
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We note that the kth row of D is e[, and that di = x/x*. 

We now construct a cone in R°  with respect to which a matrix A is 

quasimonotone nondecreasing. We begin with the case where A is diagonalizable, and 

the first eigenvalue Xi is simple. In this case we can construct the matrix 

B"^ ti 

tf. 

(Ala) 

where the <|>T are left eigenvectors of A and K((B  ))DRJ by Lemma A. 1. Then 

B = [xi, b2,..., bn] is nonnegative, and 

Ax = B-1AB = 

X1    a12 lln 

(A.2) 

If any a^ < 0 for j = 2,. .., n, then we use another change of basis of the form 

Bx = 

1   S2 

1 0 
(Alb) 

where the %{ are all nonnegative, and 

A2 = B-'AA = 

^1       «12 

K 

o 

a In 

(A3) 
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Since ay - ä y + ^(Xi - Xj), and X\ > Xj, we can make ay   nonnegative, so A2 is 

quasimonotone nondecreasing. 

In the case where Xi is not a simple eigenvalue, this construction still works, 

because for Xj = X\, ä y = 0 in equation A.2. To show this, since  äy = eJ;Abj and bj is 

in the eigenspace of \ = Xi with [bj]k = 0 (since bj is orthogonal to all of the left 

eigenvectors <J); where X\ * Xu and to e[). Hence äy = e^Xibj = 0. 

When A is not diagonalizable, Köksal and Fausett (1996) extended Heikkilä's 

results using generalized eigenvectors. Following this, we use the "almost diagonal" form 

of A or the canonical form of A with arbitrarily small s > 0 on the super-diagonal (see, 

for example, Horn and Johnson, 1991). Then, for negative  ä y, ay = ä y + £j(A,i - Xj) or 

ay = ä y + H,j(X.i - A,j) - s£j_i, so that ay > 0 for arbitrarily small s. Since the only other 

nonzero off-diagonals of A2 are s > 0, A2 is again quasimonotone. 

The results of the previous two paragraphs combine in the case where Xi is the 

eigenvalue which makes A defective. We summarize our results as follows. 

Theorem A.2. Let A e Rnxn have a real spectrum and let a^ < 0 for some i * j. 

In order for A to be quasimonotone nondecreasing with respect to a nonnegative cone, it 

is necessary that the first eigenvector xi > 0, and sufficient that Xi > 0.  D 

The disadvantage of the above construction is that we must find all of the 

generalized left eigenvectors of the matrix A in to construct the matrix A2 (and the cone 

K(BBi)). However, since we only need to know whether such a cone exists for stability 

results, it may be sufficient to compute only the first eigenvector. 
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Since in the case where xi has some negative component we know no cone exists, 

and when xi is positive a cone always exists, the only remaining case for a real spectrum 

is when Xi e <3R°. 

B.       REDUCIBLE MATRICES WITH A NONNEGATIVE FIRST 
EIGENVECTOR 

This section addresses the case where xx e dR°, or when xx > 0 has one or 

more components equal to zero. We assume xi e (R + )° © °q> where 0q indicates the 

zero vector in Rq, and p + q = n. Because xi e 9R°  we cannot necessarily apply 

Lemma A.1 to the left eigenvectors of A to obtain a nonnegative change of basis. 

Since under a (suitably ordered) nonnegative change of basis B, with Xi e K(B), 

xxi-» B-1xi e RP 0 0q. From this and Theorem HB.2, it follows that if Ai = B_1AB = 

An    A12 

o   A;2 

is quasimonotone, then if An is irreducible, it is no larger than pxp. 

Furthermore, if A22  is irreducible, then it can be put into the upper triangular form of 

equation A3 via a transformation B    = 
I     0 

0   B 
, where B22 has the form of equation 

A. 1. Since this transformation does not effect the nonnegatrvity of A12, in this case the 

quasimonotone matrix Ai = B_1AB has a reduced form with a q x p zero block. From 

this follows our first result about reducible matrices, but we first clarify the particular form 

the reducible matrix must have. 

For a reducible matrix A with a first eigenvector xi e 3R°, when A is 

permuted so that xi has all of its zeros in its last q components and A has a q x p 
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lower-left zero block, we define A as reduced. We treat matrices which are not reduced 

when xi is ordered as above with the irreducible case. 

Theorem B.l. A reduced matrix A = 
An    A12 

0     A„, 
is quasimonotone with 

respect to a nonnegative cone only if An and A22 are quasimonotone nondecreasing 

with respect to nonnegative cones. 

Proof. The previous remarks address the case where the quasimonotone form 

B_1AB=Aa = 
Aq      A + 

0 Aq 
■"■22 

is reduced. Consider the matrix A„ = 

Aq A + /\12 A + 
A

13 

0 Aq 
A

22 ■"■23 

0 0 Aq 
A

33 

where A?   are quasimonotone and irreducible, and A? > 0. Let the diagonal blocks 

have dimensions r x r, s x s, and t x t respectively, where r<p,t<q, r + s>p, and 

s + t>q. Since the largest eigenvalue Hi of A22 is either an eigenvalue of A q2  or 

A 33, then Aq has associated with this eigenvalue an eigenvector which is nonnegative in 

the last s +1 components. Hence, A22 has a nonnegative eigenvector associated with 

Hi. The case where this eigenvector is positive is the case of A q above, and when A22 

is reduced, we can repeat this argument. Since the result of this theorem is trivial in the 

case p = 1 (which is the only case required to prove Theorem C.2 in the next section) 

then the case where A22 is not reduced follows from that theorem.  D 

We now construct a cone when A is reduced, with An 6 Rpxp and A22 e R
qxq. 

Assume that c(An) = {h > ^2 ^ • • • ^ \) and G(A22) = {ui > fi2 ^ .. . ^ uq} where 

Xi > fii and A22 has a positive first eigenvector. 
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First let B0 
B„      0 'li 

0     B 22. 

, where Bn and B22 have the form of equation A. 1, so 

A1=Bö1AB0 = 

Xj   cc2-- 

0 

0 

a. 

L12 

Hi    ßa-    ß, 

H0 

has upper-left and lower-right blocks with the form of equation A. 3. While this 

transformation does not leave Ai2 unchanged, we can now let A12 be arbitrary. 

Next let B! 
I    B 12 

0      I 
where B12 = 

0 
with Yi > 0 and 

A2 = B/AjBj. This only changes the first row of A12, where 

ä i,p+i i-> ä i,p+i + ji(ki - \ii) = a^p+i, and ä i,p+j i-> ä i,p+j - yißj + y£k\ - Hj) = ay for 

j = 2,. . ., q. Since Xi > Uj, ay can be made arbitrarily large. 

0" 

Now let B2 = 
Dn    0 

0      I 
, where Dn = 

1 

-5, 

-Sp    0 

with 8; > 0, and 

A3= B2
1A2B2. While B2 is not nonnegative, we show that the product B0B1B2 still is, 

but first we examine the effect of this transformation. The off-diagonals in the first row of 

A2 are unchanged under B2, as are the last q rows. For i = 2,..., p, j = 1,. .., q, 

a;,p4j H-» ai,p+j + 8;aij, and since ay is arbitrarily large, a^ can be made nonnegative for 

arbitrarily small S;. Furthermore, for i = 2,..., p; j = 2,..., p; i * j, a;j i-> SiOtj > 0. 
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Finally, for i = 2,. . ., p; an i-> 8;[^i -X-,- ^ak8k ], and since X\ > X-, and the 6k can 
k=2 

be made arbitrarily small, then an > 0 as well. Hence, A3 is quasimonotone. 

We now show that B = BoBiB2 is nonnegative. Since B = 
BnDn    BnBi2 

0 B 22 

we only consider BnDu. If we permute An so that when constructing Bn, et = ei in 

Lemma A. 1, then Bn 

" 1 0 
x2 b22 

... K 

.XP bp2 

... V 

, where by > 0 and Xj > 0, since An has a 

positive first eigenvector. Only the first column of Bn changes under BnDn, and 

p 

Xj h-> x; - ^Sjbjj > 0 since x; > 0 and the 8j are arbitrarily small. Therefore, in this 
j=2 

case, a nonnegative cone always exists. 

We now show we can relax the assumption that An and A22 have first 

eigenvectors which are strictly positive. If An and A22 are each quasimonotone 

nondecreasing with respect to nonnegative cones, then by the above construction, each 

can be put in a quasimonotone form with arbitrarily small nonzero elements below the 

main diagonal. In this case, the above construction still works for the matrix A. We 

summarize our results. 

Theorem B.2. For a reduced matrix A 
A,,    A]2 

0     A 22 

with real spectrum and 

first eigenvector Xi e (R^ )° © 0q to be quasimonotone nondecreasing with respect to a 

nonnegative cone, it is necessary that An and A22 are quasimonotone nondecreasing 
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with respect to nonnegative cones, and sufficient that X\ > \ii, where A,i and ^i are the 

first eigenvalues of An and A22 respectively.  D 

The only reduced matrices which we have not included in this theorem are those 

where Hi = Ai. If both An and A22 are in upper-triangular quasimonotone form with 

Ui = A,i, this construction may or may not be possible, depending on the sub-matrix Ai2. 

The following example with n = 2 illustrates this. When A, > (i,, A = 
X   a12 

0     H 

is quasimonotone with respect to K(B) where B 
1   Y 

0    1 
for sufficiently large y, 

regardless of the sign of a^. Also, if a^ ^ 0, then A is quasimonotone with respect to 

K(I), regardless of X and \i. However, if \x > X and &n < 0, then A is not 

quasimonotone with respect to any nonnegative cone. (The case \x> X violates the 

necessary condition of the first eigenvector being nonnegative.) Furthermore, if &n > 0, A 

has two nonnegative generalized eigenvectors, but if a^ < 0, A has a generalized 

eigenvector x2 g R+. 

Using the same construction as we did when Xi > Ui, we formulate the following 

sufficient condition for a cone to exist, which we do not describe in terms of generalized 

eigenvectors, but instead in terms of the sub-matrix A12. 

Corollary B.3. For a reduced matrix A: Ml      ""-12 

0     A22, 
with real spectrum and 

first eigenvector xi e (R^ )° © 0q to be quasimonotone nondecreasing with respect to a 

nonnegative cone, it is necessary that An and A22 are each quasimonotone with respect 
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to nonnegative cones. Furthermore, if An and A22 are in upper-triangular 

quasimonotone form with an = X\ and ap+i,p+i = Ui = Xh where fii is a simple 

eigenvalue of A22, then it is sufficient that a^i > 0 for i = 1,. . ., p.  □ 

We can formulate similar sufficient conditions from this construction if uj is not a 

simple eigenvalue of A22. Given the non-uniqueness of generalized eigenvectors, we have 

not produced a condition in this case that is based on generalized eigenvectors, although in 

the case where n = 2 the sufficient condition in Corollary B.3 is also necessary, and the 

requirement for both generalized eigenvectors to be in R +  is evident. 

C.       IRREDUCIBLE MATRICES WITH A NONNEGATIVE FIRST 
EIGENVECTOR 

This section addresses the case where xi e dR °, but A is either irreducible or 

not reduced. Consider the matrices A = 

7 -2 -7" 

4 1 -9 

-1 .1 1 

and A = 

7 -2 -7" 

6 -1 -9 

-1 .1 3 

, which 

have X,i = 5, X2 « 2.894, X3 « 1.106, and xi = [1, 1, 0]T   A is quasimonotone 

nondecreasing with respect to K(B) where B 

1 2 15 

1 3 17 

0 .05 1 

, yet A  is not 

quasimonotone nondecreasing with respect to any nonnegative cone. 

From the discussion preceeding Theorem B. 1, if A has a quasimonotone form via 

a nonnegative change of basis, then some such matrix \ is reduced with a lower-left zero 

block. Furthermore, if Aq = 
An    A12 

0     A„ 
and An has a positive first eigenvector (for 
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example, if it is irreducible) then we can put An in the form of equation A. 3 using a 

transformation of the form of equation A. 1. If Xi is simple, we can use the techniques of 

Section B for reduced matrices to ensure A12 is nonnegative. This proves the following. 

Lemma C.l. If a matrix A with real spectrum and first eigenvector 

xi e (RI)° © 0q is quasimonotone nondecreasing with respect to a nonnegative cone, 

then it is quasimonotone nondecreasing with respect to a nonnegative cone for which Xi 

is an extremal.  D 

We cannot generally construct a nonnegative cone with respect to which A is 

quasimonotone as we did in Sections A and B (since the example in this section shows 

that such a cone does not always exist) but we can reduce the dimension of the problem by 

one by deflating the matrix with the first eigenvector as follows. Let Bc 
(1)   0 

T where I is the identity matrix of dimension n - 1, and xi = [1, £2, • •., £P, 0, • • ,0] , so 

A, = Bö1AB0 = 
0     a:: 

X1    axj 

0    A 22, 

, where a^ = ay - ai&, and for i > p, äö = a,. 

Since Theorem B. 1 is trivial in the case p = 1, Ai is quasimonotone with respect 

to a nonnegative cone only if A22 is, so this is a necessary condition for A to be 

quasimonotone with respect to a nonnegative cone. Furthermore, since Xi > X\ for i = 2, 

..., n (i.e., X,i is an eigenvalue of A22) then using a transformation Bi of the form of 

equation A. lb, we can make A2=B[1A1B1 quasimonotone as well. 

The cone K(B0) is a subcone of R \ © R +, where we replaced one of the first p 

basis vectors with xi. The transformation we showed replaced ei, but the choice of 
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which basis vector to replace can be varied by permuting the first p components of xi. It 

is only necessary that one such transformation produce a matrix A22 which is 

quasimonotone with respect to a nonnegative cone in order for the above construction to 

produce a cone for the matrix A. We summarize these results as follows. 

Theorem C.2. Let A € Rnxn have a real spectrum with a first eigenvector 

xi e(Rp
+)°® 0q, and let A be irreducible (or not reduced). Then for A to be 

quasimonotone nondecreasing with respect to a nonnegative cone it is necessary that for 

B0 = 
(1)   0 

for some permutation xl e (Rp
+)° © 0q of xh and for 

A, = B^AB0 = 
Xx    a 

0    A 22. 

, that the matrix A22 be quasimonotone nondecreasing with 

respect to a nonnegative cone. In this case, it is sufficient that X\ be a simple eigenvalue 

of A.  D 

When Xi is not simple the problem is the same as the one discussed in the reduced 

X   a, 
case, where, for example, A = 

of ai2. 

12 

0     X 
, and the quasimonotonicity depends on the sign 

The choice of which permutation of Xi to select is not obvious, but there are only 

p such choices that lead to distinct cones. One solution is to compute the second 

eigenvector x2 of A, associated with X2, which is the eigenpair required for A22 to be 

quasimonotone. Since the last n - 1 components of B~'x2 are the first eigenvector of 

A22, then finding a B"1 such that B_1x2 > 0 is necessary, and that the last n - 1 

components of B_1X2 > 0 is sufficient, to determine that such a cone exists. 
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V. THE QUASIMONOTONICITY OF A SQUARE, LINEAR OPERATOR WITH 
RESPECT TO A NONNEGATTVE CONE: THE GENERAL SPECTRUM 

A.       IRREDUCIBLE, ESSENTIALLY NONNEGATTVE MATRICES. 

In this chapter we discuss the problem of finding a cone with respect to which the 

matrix A is quasimonotone nondecreasing in the case where A has a general (complex) 

spectrum, or when a(A) is not strictly real. Because A is real, its complex eigenvalues 

and eigenvectors occur in conjugate pairs; however, unlike with the real spectrum, the 

real-diagonal form of A is not quasimonotone (it has diagonal blocks which necessarily 

have a negative off-diagonal element) so we can no longer use the diagonal form 

Additionally, a matrix A with a general spectrum is not always similar to a 

quasimonotone matrix, much less through a nonnegative change of basis. The problem of 

detennining when a given set of complex numbers is the spectrum of a nonnegative matrix 

is known as the nonnegative inverse eigenvalue problem, and we discuss it in the next 

section. Since a matrix with a real spectrum is always similar to a quasimonotone matrix 

(its diagonal, or Jordan canonical form) this was not an issue in Chapter IV, and the only 

task was to produce a nonnegative change of basis. However, in this chapter, the 

nonnegative inverse eigenvalue problem plays a significant role in our solution. 

We have some amount of flexibility over the nonnegative inverse eigenvalue 

problem in that the matrices we seek are essentially nonnegative, and we can make them 

nonnegative by shifting the diagonal (and the spectrum) by a positive quantity r. Since 

B_1AB is essentially nonnegative if and only if B-1AB + rl is nonnegative for sufficiently 
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large r, and since B-1(A + rI)B = B-1AB + rl, for this problem to have a solution the 

nonnegative inverse eigenvalue problem must have a solution for the set a(A) + r. 

We now show that the matrices we need to consider have an irreducible. 

essentially nonnegative form Otherwise, if B 1 AB = Aq = 
An    A12 

0     A 22, 

is essentially 

nonnegative, then the shifted spectra a(An) + r and a(A22) + r must both solve the 

nonnegative inverse eigenvalue problem hi this case we transform Ai2 using the 

construction in Chapter IV, although if An and A22 are not reducible, we cannot take 

advantage of the upper-triangular structure they had in the case of the real spectrum. We 

use this, and the methods of Chapter IV, to discard a portion of the real part of a(A), and 

we consider only that part which is required to form a solution to the inverse eigenvalue 

problem. For example, if a(A22) c R, by using transformations B 
I     0 

0   B 22 

where 

B22 is formed using the techniques of Chapter IV, we only need the theory for the 

complex spectrum to treat An. 

Since the final quasimonotone form is irreducible, it has a positive first 

eigenvector, so A having a positive first eigenvector is a necessary condition for this 

problem to have a solution. (Or as in A, above, xi must have at least enough positive 

components to correspond to the dimension of An.) Furthermore, from Frobenhis 

(1912) the first eigenvalue Xi must be simple or the quasimonotone form is reducible. 

Since the (shifted) spectrum of A must solve the nonnegative inverse eigenvalue 

problem for A to be quasimonotone nondecreasing with respect to a nonnegative cone, 
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and it is necessary that the first eigenvector of A be positive when the quasimonotone 

form, Aq, is irreducible. We now show that these conditions are sufficient. 

Without loss of generality, assume Aq is not cyclic (otherwise we can further shift 

its spectrum so that it is non-cyclic). Let D be the real-diagonal canonical form of both 

A and Aq, so D = B ~* AB0 = B ~! AqBi. Not only are the spectra of A and Aq the same, 

but the matrices are similar, so that the eigenvalues have the same geometric multiplicity 

as well. Hence, when we require the shifted spectrum of A to solve the nonnegative 

inverse eigenvalue problem, this includes the geometric multiplicity of the eigenvalues. 

Here, B0 = [xi,..., xj and Bi = [b1;. .., b„] where the x; and b; are the real parts of 

the (generalized) eigenvectors of A and Aq respectively, and xi and bi are the 

positive first eigenvectors associated with the simple eigenvalue X\ of greatest real part. 

While Aq = BXB ~* ABoB ~*, it is not generally true that BoB ~* > 0, as required. 

However, we further change bases using A°  as n-»oo without changing Aq to make 

the change of basis nonnegative. Let B = B0B j"1 A°, so 

Aq = B_1AB = (A° )-1BiB ^ ABoB j"1 A°. Since Aq is irreducible, non-cyclic, and has a 

simple first eigenvalue, A° -> [bi,..., bi] as n -> oo. Therefore, as n -»• oo, 

B^B0B-1[bi,...,b1]=Bc 
1   —   1 

0 
[xi,.. ., xi] > 0, so A is quasimonotone 

nondecreasing with respect to a nonnegative cone. 

Hence, given a positive first eigenvector, we have reduced the problem to the 

nonnegative inverse eigenvalue problem,. We summarize our result as follows. 
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Theorem A.l. For a matrix A e Rnxn with complex eigenvalues to be similar to 

an irreducible, essentially nonnegative matrix by a nonnegative change of basis, it is 

necessary and sufficient that A have a positive first eigenvector (associated with the 

simple real eigenvalue of greatest real part) and that the shifted spectrum of A solve the 

nonnegative inverse eigenvalue problem for an irreducible matrix.  □ 

In the case where the final quasimonotone form is reducible, A22 as well as An 

may have a non-real spectrum, in which case we can apply the above theorem to each of 

them individually, and then use the techniques of Chapter IV to make A]2 nonnegative. In 

the case where a(A22) is strictly real we can use the techniques of Chapter IV to "throw 

out" this real part of the spectrum, and construct An using the above techniques. The 

following example shows, however, that we cannot simply "throw out" all but X\ from 

the real part of the spectrum 

The matrix A = 

0 1 0 0" 

0 0 1 0 

0 0 0 1 

1 0 0 0 

is a 4 x 4 circulant matrix (each row is a shift of 

the previous one; see Davis, 1979), which is a type of cyclic matrix (its eigenvalues are the 

four roots of unity). Since c(A) = {±1, ±i}, this set is a solution to the nonnegative 

inverse eigenvalue problem. However, we cannot discard the eigenvalue X,4 = -1, since 

the set a = {1, i, -i} is not the spectrum of any nonnegative (or quasimonotone) matrix. 

Furthermore, the left eigenvector associated with X4 has two components of each sign, so 
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that the transformation required to throw out A4, B -1 _ 0 

♦I 
cannot have a 

nonnegative inverse B. 

When a matrix has a reducible quasimonotone form under a nonnegative change of 

basis we cannot discard all but the essential real part of the spectrum prior to constructing 

Aq. Using transformations of the form B   = 

"I 0" 

<t>p+l 

.  ♦; 

for some collection of n - p 

left eigenvectors, requires B to be nonnegative, which is not true in general. However, in 

the cases where this construction can be done a priori, then Theorem A. 1 gives sufficient 

conditions for our problem to have a solution. 

To complete this topic, we present a brief discussion of the nonnegative inverse 

eigenvalue problem. 

B.        THE NONNEGATIVE INVERSE EIGENVALUE PROBLEM 

There are many types of inverse eigenvalue problems. Given a set of numbers and 

a structure, they ask when that set of numbers is the spectrum of a matrix with the given 

structure. For a thorough survey of inverse eigenvalue problems, see Chu (1998). The 

structure we require is essential nonnegativity, or nonnegativity for the shifted spectrum. 

The nonnegative inverse eigenvalue problem is one of the classic unsolved problems from 

the theory of linear algebra (see, for example, Horn and Johnson, 1991) although some 
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sufficient and some necessary conditions have been given for a set of complex numbers to 

be the spectrum of a nonnegative matrix. 

The nonnegative inverse eigenvalue problem dates back to Perron and Frobenius, 

and has been approached in numerous forms and variants since then. Necessary conditions 

for real spectra were given by Suleimanova (1949). His results were improved by 

Karpelevich (1951), Perfect (1952, 1953, 1955), Suleimanova (1965), and Fiedler (1972). 

Fiedler (1974) extended these results with the additional requirement that the matrix be 

symmetric, and Friedland and Karlin (1975) solved a variant of the problem known as the 

nonnegative additive inverse eigenvalue problem Most of the results for real spectra are 

refinements of Suleimanova's necessary condition that the absolute value of the sum of the 

negative eigenvalues may not exceed Xi > 0. Results of this type are always obtainable 

for essentially nonnegative matrices since we are allowed to shift the spectrum, and as 

mentioned earlier, the diagonal matrix of any real spectrum is essentially nonnegative. 

For complex (not strictly real) spectra, the problem is more difficult. Because of 

the close relation to nonnegative matrices (see von Mises, 1931) it has been addressed in 

various forms for nonnegative stochastic matrices, starting with Frechet (1933), 

Romanovsky (1936), Dmhriev and Dynkin (1945), Taussky (1948), and Brauer (1952). 

Brauer presents a summary of the previous results, in addition to his own results and 

methods of proof. Friedland and Melkman (1979) resolve the question in the case of 

nonnegative Jacobi matrices, and numerous bounds for the spectra of nonnegative 

matrices exist (see, for example, Ostrowski and Schneider, 1960) as well as results on the 

first eigenvector of nonnegative matrices (see, for example, Mine, 1970; or Ashley, 1987), 
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but these latter results require a priori knowledge of the matrix. Additionally, Friedland 

(1977) extended his previous results for real spectra to complex spectra for the additive 

and multiplicative nonnegative inverse eigenvalue problem. 

Of the more recent results on the nonnegative inverse eigenvalue problem for 

complex spectra, as it applies to our problem, we mention those which provide sufficient 

conditions that may be used by the analyst, for example, to draw a stability conclusion in 

the method of vector Lyapunov functions. Kellogg (1971) addressed the problem of when 

a set of complex numbers is the spectrum of an essentially positive matrix (hence, for our 

application, certainly an irreducible essentially nonnegative matrix). He found a sufficient 

condition to be Re (h) - Re(X,i+i) > V3 Im(X.i+i) when the eigenvalues are ordered by 

their real parts, where Xi is the first (real) eigenvalue, and the X\ are the eigenvalues 

with positive imaginary parts for i > 1. The other real eigenvalues do not affect this 

condition. Certainly, the condition is not necessary, as the set { V2 + s, ±i} is the 

spectrum of a positive matrix for all s > 0. 

Friedland (1978) addressed the problem for eventually nonnegative matrices 

n 

(where Ak is nonnegative for all k > M for some M >1) and showed that if ^TXP
{ ^ 0 

i=l 

for some p e {1, 2,...} and if X\ is the only positive X-, for i= 1,..., n, then A is 

eventually nonnegative. This supports the conjecture that if k = 1, then {A,;} is the 

spectrum of a nonnegative matrix, although no proof has been found yet. Furthermore, if 
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A > 0, Ak > 0, it is necessary that ^ Xk > 0. Similarly, Lowey and London (1978) gave 
i=l 

the further necessary condition that ( ]£ X\ )m < nm_1 £ ^m   for all k, m e {1, 2,.. .}. 
i=l i=l 

Boyle, et. al, (1991) characterized via symbolic dynamics the sets of complex 

numbers which are the nonzero portion of the spectrum of a nonnegative matrix; however, 

their result is conjecture. Their results are important in that they are presented for 

primitive matrices (those matrices A > 0 for which Ak > 0 for some k). For the 

nonnegative inverse eigenvalue problem, this is sufficient as the generalization to 

irreducible or nonnegative matrices is easily determined. More significant, however, is 

that for our stability application, since a primitive matrix is a special case of an irreducible 

nonnegative matrix, this is all we need to apply the techniques of the previous section. 

Further results, for example the sufficient conditions of T. J. Laffey or those of 

Koltracht, Newman, and Xiao (1993) (where Boyle's conjecture is shown to be true for 

n < 5), are discussed in Berman and Plemmons (1994). There are probably enough 

necessary and sufficient conditions in the literature that most spectra encountered can be 

determined to be solutions of the nonnegative inverse eigenvalue problem (or not), but as 

long as the problem is unsolved, the pathological case cannot be discounted. 
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VL FURTHER APPLICATIONS 

This chapter presents additional applications that can benefit from the results of 

this dissertation. 

Boyd, et. ai, (1994) present the problem of positive orthant stabilizability, which 

is a special case of the "hit and hold" problem from control theory (see Berman, Neumann, 

and Stern, 1991). Given a linear differential system x' = Ax where A e Rnxn, when does 

x(0) e R°  imply x(t) e R°  for all t > 0, and x(t) -» 0 as t -> oo? It is a necessary and 

sufficient condition that there exist a diagonal matrix P > 0 such that PAT + AP < 0, and 

that A be essentially nonnegative. 

Ohta, Maeda, and Kodama (1984) discuss a similar problem where the state 

variable is not required to be nonnegative, in which case the problem of finding an 

essentially nonnegative matrix is the nonnegative inverse eigenvalue problem for the 

shifted spectrum. They also present the positive realization problem, which is similar to 

the problem of positive orthant stabilizability, and for which essentially nonnegative 

matrices play an important role. 

In the problem of positive orthant stabilizability, we cannot arbitrarily shift the 

spectrum of a linear dynamic system without changing the problem However, if the 

matrix A is not essentially nonnegative, but its spectrum satisfies the necessary 

conditions, then our techniques can find a cone contained in the positive orthant which can 

be stabilized under the original system. Our techniques can also be used to find a cone 

containing the positive orthant which can be stabilized under the original system 
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A related problem from control theory in Stern (1980) is that of asymptotic 

holdability, where a trajectory must be held arbitrarily close to a linear subset of Rn (not 

necessarily the nonnegative orthant) for any finite time interval. This leads to positively 

invariant cones, which Stern (1982) characterized for cones other than R °. These are 

cones K such that when x(t) is the solution to x' = Ax, then x(0) e K implies x(t) e K 

for all t > 0. A sufficient condition in this case is the essential nonnegativity of A with 

respect to K. 

The hit and hold problem considers a positively invariant simplicial cone K in Rn, 

and determines the set of initial values XA(K) in Rn which eventually reach K (and 

hence remain there due to the positive invariance of K) under x' = Ax. Neumann and 

Stem (1985) show that XA(K) is itself a cone, and they characterize it for diagonalizable 

systems A. Berman, Neumann, and Stern (1986) extend these results to 

nondiagonalizable systems A. These results require the spectrum of A to be real, and a 

result from Berman, Neumann, and Stern (1991) requires the matrix A to be essentially 

nonnegative as a condition of the theorem. 

In the case where A is not essentially nonnegative, the hit and hold problem has 

not been solved. However, we use our techniques to find a nonnegative cone Ki with 

respect to which A is essentially nonnegative, and the theorem of Berman et. ai, can be 

applied to a smaller cone Ki. If XA(Ki) ID K, then this is a solution to the hit and hold 

problem for K 

These results have applications to economics (see, for example, Sierksma, 1979), 

engineering, and biology, where frequently state variables are nonnegative and the 
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essential nonnegativity of the differential system is often required. If a problem is defined 

on the nonnegative orthant and the operator is not essentially nonnegative, our solutions 

may be used to find a sub-cone of R°  for which the problem has the required properties, 

and to which the results from control theory may be applied. 

Bitsoris (1988) studied the hit and hold problem for discrete-time dynamical 

systems x*+i = Axk, and showed that in addition to invariant cones, invariant polyhedral 

sets also arise, and these results could be applied to the unsolved problem of determining 

the spectral properties of systems possessing positively invariant polyhedral cones. For 

the continuous-time case, Castelan and Hennet (1993) again related the existence of 

positively invariant polyhedral sets to the problem of rinding an essentially nonnegative 

matrix. 

Since we have a technique for finding essentially nonnegative matrices with respect 

to smaller cones (or larger cones if we consider the transpose of the original system) then 

depending on the requirements of the application we also have a useful technique for 

finding positively invariant polyhedral sets in dynamical systems. 

The requirement that a change of basis be nonnegative is a natural one for many of 

these applications, although the techniques we developed can be extended to cones 

outside of the nonnegative orthant (where for the real spectrum, the problem of seeking an 

essentially nonnegatfve matrix becomes trivial, and for the general spectrum is simply the 

nonnegative inverse eigenvalue problem for the shifted spectrum). Furthermore, our 

results for complex spectra may be used to extend current results which exist only for 

matrices with real spectra. 
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Stern (1982) shows that when the general cone K = R °, the problem of positively 

invariant cones has its solution in the theory of M-matrices. An M-matrix (after 

Minkowski) is a square matrix A = rl - B where B > 0 and r > p(B) (or r > p(B) for 

nonsingular M-matrices). This is a subset of the class of essentially nonpositive matrices 

with nonnegative diagonals. M-matrices occur frequently in problems from the biological, 

physical, and social sciences (see, for example, Plemmons, 1977) as well as from the 

mathematical sciences, and Varga (1976) points out that there is an infrequent exchange of 

results between these disciplines. 

Stern (1981) shows that while a matrix which is cone invariant under the 

differential system x' = Ax, x(0) e K is more general than the requirements for A to be 

an M-matrix. However, the main properties which hold for M-matrices also hold for A, 

which he calls a generalized M-matrix. Numerous classifications of M-matrices have been 

shown (see, for example, Rothblum, 1979; or Stern and Tsatsumeros, 1987) and most of 

these are related to the cone ihvariance of A or the exponential nonnegativity of -A. 

In terms of other applications of M-matrices, Araki (1975) shows a direct 

application to the method of vector Lyapunov functions (similar to what we presented in 

Chapter HI), and Kielson and Styan (1973) relate them to the theory of Markov chains 

which they use to establish results concerning the nonnegative inverse eigenvalue problem 

for complex spectra. 

The negative of an M-matrix is an essentially nonnegative matrix, but the problem 

we present has a less obvious but more important connection to the theory of M-matrices, 

although our solution technique does not provide an immediate solution. The inverse M- 
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matrix problem (see Willoughby, 1977) asks when the inverse of a positive matrix is an M- 

matrix, and it is also mentioned that nonnegative matrices which are not strictly positive 

may also have M-matrices as their inverses, but the zeros may only be those associated 

with reduclbility. Since the spectra of M-matrices have certain properties, not every 

positive matrix solves the inverse M-matrix problem, but as our problem allows a shift in 

the spectrum, an irreducible solution to our problem may be a way to obtain an M-matrix 

(or its inverse) which might have use in the numerous applications of M-matrices. 

A more general class of matrices than M-matrices is those with nonpositive off- 

diagonal entries (see Berman, Varga, and Ward, 1978), or essentially nonpositive 

matrices. This class has an important subclass where all of the principal minors are 

positive (see Fiedler and Ptäk, 1962) which is also a more general class than M-matrices. 

Again, the relationship of these classes of matrices to essentially nonnegative matrices is 

evident, particularly if we are allowed to shift the spectrum. While the techniques we 

present do not easily adjust to find a matrix with nonpositive off-diagonal elements, it may 

be possible to develop a similar technique for essentially nonpositive matrices. 

Further classes of matrices studied in relation to the problem of when a matrix is 

positive on a cone include the cross-positive matrices, which are those matrices A for 

which x e K and y e K* are such that <x, y> = 0, then <x, Ay) > 0 for a proper, 

simplicial cone K. These matrices are discussed in Schneider and Vidyasagar( 1970) and 

Tarn (1975), and the former draws the relationship to essentially nonnegative matrices. 

This relationship is through the exponential of a matrix, where a matrix A is cross- 

positive on K if and only if eA is positive on K This is true if and only if A is 
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essentially nonnegative on K. While the paper shows the case of K being the 

nonnegative orthant, the change of bases we constructed can make the result more 

general, either in terms of smaller or larger cones. The class of cross-positive matrices 

includes the copositive matrices, which are symmetric and for which K = R"   (see 

Haynsworth and Hoffman, 1969). These matrices are also essentially nonnegative, and in 

addition to the applications previously mentioned, they are important in the field of 

mathematical programming. 

The question of when a linear differential operator is quasimonotone with respect 

to a nonnegative cone is related to the question of when a linear transformation has an 

invariant cone. Birkoff (1967) studied this problem and used the results to give a 

constructive proof of Perron's theorems. Following Birkoff, Vandergraft (1968) 

characterized the spectral properties of matrices with invariant cones. These results were 

extended by Barker and Turner (1973) and were related to the nonnegative inverse 

eigenvalue problem. These ideas have been used in algebraic Perron-Frobenius theory 

(see Barker and Schneider, 1975) and have been studied geometrically to extend the ideas 

to non-simphcial cones (see Barker, 1973). An algebraic extension of Lowey and 

Schneider (1975) further characterizes matrices with invariant cones. These techniques 

were applied by Vandergraft (1972) to establish the convergence of some splitting 

methods for solving systems of linear equations. For example, both the Jacobi and Gauss- 

Seidel methods converge for essentially nonpositive matrices with positive inverses (see 

Varga, 1962), although to apply our techniques to this problem may be more challenging 

numerically then solving the original problem Ax = b. 
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The question of when a matrix is quasimonotone nondecreasing (or nonincreasing) 

with respect to a cone is not new, although the requirement that the cone be nonnegative 

does not appeared frequently in recent applications. In applications where the state 

variables are required to be nonnegative (for example, in population dynamics), and when 

the original problem is defined on the nonnegative orthant, this requirement is important. 

These applications, in addition to the one of cone-valued vector Lyapunov functions, 

demonstrate the usefulness of the results of this dissertation. 

79 



80 



VIL CONCLUSIONS AND FUTURE RESEARCH 

This dissertation asks, and answers, the question of when a matrix 

A e R"*" is quasimonotone nondecreasing with respect to a nonnegative cone. Chapter 

IQ motivates this question with the theory of cone-valued vector Lyapunov functions from 

stability theory in dynamical systems. Chapter VI presents other applications and related 

problems where the results can be used. We summarize these results as follows. 

A matrix A e Rnxn is quasimonotone nondecreasing with respect to a nonnegative 

cone if the following conditions hold. 

(1) (Heikkna, 1980). It is necessary that the matrix A have a real first eigenvalue Xi 

such that Xi > Re(X;) for i = 2,..., n. Furthermore, it is necessary that associated with 

Xi be a first eigenvector xx > 0. 

(2) When CT(A), the spectrum of A, is real, it is sufficient that xi > 0. 

(3) When a(A) c R, Xl 6 (R>)° © 0q, and A = Ml       *M2 

0     A22 

is reduced with 

p(An) > p(A22), it is necessary and sufficient that A22 <= Rqxq be quasimonotone 

nondecreasing with respect to a nonnegative cone. 

(4) When G(A) CZ R, XI e (R* )° © 0q, and A is irreducible (or not reduced) it is 

necessary that for some permutation xx e (RI)° © 0q of xi, and for the transformation 

B 
(1)   0" 

x,    I 
with Ai = B_1AB 

0    A 22. 

, that the matrix A22 be quasimonotone 

nondecreasing with respect to a nonnegative cone. In this case it is sufficient that Xi be a 

simple eigenvalue of A. 
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(5) When o(A) cR and A 
An    A12 

0     A 22 

satisfies the necessary conditions in (3) 

above, X = p(An) = p(A22), and An and A22 are in upper-triangular quasimonotone 

nondecreasing form with Ap+i,p+i = X, then it is sufficient that Ai;P+i > 0 for 1 < i < p. 

(6) For G(A) c£ R, it is necessary that xi have positive components corresponding to Xi 

and at least all of the eigenvalues with nonnegative imaginary parts. Furthermore, 

considering just the irreducible quasimonotone forms (for which xi > 0) it is necessary 

and sufficient that the (shifted) spectrum of A solve the irreducible nonnegative inverse 

eigenvalue problem. 

There are still some unresolved issues for the construction of the cone K(B). The 

case discussed in (5) above (Proposition IV.B.3) is not fully resolved. However, in order 

to apply the construction in (4) above (the proof of Theorem IV.B.2) to such matrices, the 

sufficient condition in (5) is also necessary. 

m Lemma IV.A. 1, constructing the matrix B-1 with nonnegative inverse B, using 

equation IV.A. la requires selecting a basis vector e^. Aside from trying all n 

possibilities, we do not have an efficient method for selecting ek. However, this is only 

needed when constructing the cone. The application of vector Lyapunpv functionsdoes 

not require the cone's construction, since it is sufficient to know such a cone exists to 

draw a stability conclusion. 

Furthermore, in Section IV. C we replace some ek, ke{l,...,p} with xi when 

constructing the first cone. Again, we may have to try all p possibilities, although we did 

present a method of reducing the search. This is more important to applications that only 
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require the existence of a cone, as this constructive step is required before we can 

determine the quasimonotonicity of A22, and hence, A. 

A problem with the above technique, which is certainly a significant problem in 

applications that require constructing the cone, is that we must compute the generalized 

eigenvectors of a matrix. In case (4) above, if existence is all we have to determine, then 

it may be sufficient to compute the first two eigenvectors of A. However, to find the 

cone we need to compute all of the generalized left eigenvectors of A. While 

theoretically this construction always exists, and while our results give strong existence 

conclusions, it may be numerically intractible to actually construct the required cone. 

Concerning the related problems discussed in Chapter VI, for example the 

applications of M-matrices, in order to use the techniques of this paper to transform a 

given matrix into one of a particular form, then the cone K(B) must certainly be 

constructed. We do not yet know of a simpler construction than the one we presented. 

When the spectrum is complex we have the further problem of determining which 

part of the real spectrum is required to solve the irreducible nonnegative inverse 

eigenvalue problem. Certainly we can use (for an irreducible, quasimonotone matrix) no 

more eigenvalues than there are nonzero components of xi, but we could have a further 

grouping of the complex eigenvalues with different collections of real eigenvalues when 

the final quasimonotone form of the matrix is reducible. We do not know a priori which 

collections may work, aside from trying all of them. As in all of the above problems, since 

the method of vector Lyapunov functions is a proven method in examining large scale 
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dynamical systems (see Siljak, 1978; or Michel and Miller, 1977) we cannot expect to 

have simple numerical results when we employ these techniques. 

Finally, as long as the nonnegative inverse eigenvalue problem is unsolved, then 

this problem is unsolved for the complex spectrum as well, for we have shown that under 

the condition of a positive first eigenvector, the problems are equivalent. 

These questions present further directions for research, if not in terms of the actual 

solution to the problem, then at least in terms of the computability and efficiency of the 

method of solution, particularly when the application requires constructing the cone. We 

have provided analysts and researchers a basic theory and some useful techniques for 

approaching these problems. 
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